Как подобрать транзистор для мощного умножителя частоты. Умножение частоты в генераторах

  • Дата: 23.12.2021

умножитель частоты

радиоэлектронное устройство для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Используется преимущественно для повышения частоты стабильных колебаний в радиопередающих, радиолокационных, измерительных и других устройствах.

Умножитель частоты

электронное (реже электромагнитное) устройство, предназначенное для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Отношение fвых/fвх (fвх и fвых √ частоты колебаний соответственно на входе и выходе У. ч.) называется коэффициента умножения частоты m (m ³ 2; может достигать нескольких десятков). Характерная особенность У. ч. √ постоянство т при изменении (в некоторой конечной области) fвх, а также параметров У. ч. (например, резонансных частот колебательных контуров или резонаторов, входящих в состав У. ч.). Отсюда следует, что если fвх по каким-либо причинам получила приращение Dfвх (достаточно малое), то приращение Dfвых частоты fвых таково, что Dfвх/fвх = Dfвых/fвых, т. е. относительная нестабильность частоты колебаний при умножении остаётся неизменной. Это важное свойство У. ч. позволяет использовать их для повышения частоты стабильных колебаний (обычно получаемых от кварцевого задающего генератора) в различных радиопередающих, радиолокационных, измерительных и др. установках.

Наиболее распространены У. ч., состоящие из нелинейного устройства (например, транзистора, варактора, или варикапа, катушки с ферритовым сердечником; электронной лампы) и электрического фильтра (одного или нескольких). Нелинейное устройство изменяет форму входных колебаний, вследствие чего в спектре колебаний на его выходе появляются составляющие с частотами, кратными fвх. Эти сложные колебания поступают на вход фильтра, который выделяет составляющую с заданной частотой mfвх, подавляя (не пропуская) остальные. Поскольку такое подавление в реальных фильтрах не является полным, на выходе У. ч. остаются нежелательные (т. н. побочные) составляющие, т. е. гармоники с номерами, отличными от m. Задача облегчается, если нелинейное устройство порождает практически только m-ю гармонику fвх, √ в этом случае иногда обходятся без фильтра (известны подобные У. ч. на туннельных диодах и специальных электроннолучевых приборах). При m > 5 бывает энергетически выгоднее использовать многокаскадные У. ч. (в них выходные колебания одного каскада служат входными для другого).

Находят применение также У. ч., действие которых основано на синхронизации автогенератора (см. Генерирование электрических колебаний). В последних возбуждаются колебания с частотой f0 = mfвх, которая становится в точности равной mfвх под действием поступающих на его вход колебаний с частотой fвх. Недостаток таких У. ч. √ сравнительно узкая полоса значений fвх, при которых возможна синхронизация. Кроме указанных, некоторое распространение получили радиоимпульсные У. ч., в которых на вход электрического фильтра подаются радиоимпульсы определённой формы, вырабатываемые под действием входных колебаний с частотой fвх.

Основная проблема при создании У. ч. √ уменьшение фазовой нестабильности выходных колебаний (обусловленной случайным характером изменения их фазы), приводящей к увеличению относительной нестабильности частоты на выходе по сравнению с соответствующей величиной на входе. Строгий расчёт У. ч. связан с интегрированием нелинейных дифференциальных уравнений.

Лит.: Жаботинский М. Е., Свердлов Ю. Л., Основы теории и техники умножения частоты, М., 1964; Ризкин И. Х., Умножители и делители частоты, М., 1966; Бруевич А. Н., Умножители частоты, М., 1970; Радиопередающие устройства на полупроводниковых приборах, М., 1973.

И. Х. Ризкин.

Википедия

Умножитель частоты

Умножитель частоты - электрическое или электронное устройство, в котором при подаче на вход колебаний с периодом 2 ⋅ π /ω на выходе формируются колебания с периодом 2 ⋅ π /N  ⋅ ω .

Умножители применяются для:

  1. Переноса кварцованных частот (СВЧ-диапазон;
  2. Синтезирования сетки частот;
  3. Измерения стабильности частоты.

В радиопередающих устройствах, применяя умножители, удаётся:

  1. Понизить частоту задающего генератора, что повышает стабильность;
  2. Расширить диапазон перестройки радиопередающего устройства при меньшем диапазоне перестройки задающего генератора;
  3. Повысить устойчивость работы радиопередающего устройства за счёт ослабления обратной связи, так как в умножителе частоты входные и выходные цепи настроены на разные частоты;
  4. Увеличить абсолютную девиацию частоты или фазы при частотной или фазовой модуляции.

Умножение частоты это процесс получения колебаний с частотой кратной частоте исходного колебания.

Умножение частоты применяется в случае, если по каким либо причинам невозможно получить колебание с требуемой частотой (на частотах нескольких сотен мегагерц и выше) или при необходимости получить частоту колебаний с точностью кратную определенной частоте.

Умножение частоты может осуществляться тремя методами:

  • метод угла отсечки;
  • метод получения частот с помощью периодической последовательности импульсов (ППИ);
  • метод получения кратных частот с помощью радиоимпульса.

Метод угла отсечки

Данный метод используется для получения гармонического колебания с кратной частотой из другого гармонического колебания. Для получения колебания с требуемой частотой необходимо трансформировать спектр входного сигнала (внести в спектр новые гармонические составляющие). Для трансформации спектра используется нелинейный элемент, работающий в режиме отсечки. Для этого положение рабочей точки задается, с помощью напряжения смещения U 0 , за пределами вольт-амперной характеристики элемента (рисунок 26). В этом случае элемент открывается лишь в момент, когда напряжение входного сигнала Uвх достигает определенного начального значения Uн. Когда Uвхуглом отсечки (q), который равен половине той части периода входного колебания, в течении которой через нелинейный элемент протекает ток, или, другими словами, равен половине длительности импульса. При q=0 напряжение на выходе элемента отсутствует, т. к. элемент все время закрыт. При q=180° элемент работает без отсечки и на выходе наблюдается гармоническое колебание, причем в спектре этого колебания будет присутствовать постоянная составляющая.

Рисунок26 - К пояснению режима работы нелинейного элемента при умножении частоты

Угол отсечки может быть определен из выражения

cos ? = (U н U 0 )/ Um (36)

где Um — амплитуда входного колебания.

Амплитуда импульсов выходного тока определяется выражением

Im = S ср ? Um (1 cos q ) (37)

В спектре полученной периодической последовательности содержится множество составляющих расположенных на частотах кратных частоте входного сигнала. Амплитуда этих составляющих определяется выражением

Im k = a k (q ) ? Im (38)

где Im k — амплитуда k-ой составляющей спектра отклика;

a k (q) — коэффициент пропорциональности для k-ой составляющей спектра;

Im — амплитуда импульсов выходного тока.

Коэффициенты a k (q) зависят от угла отсечки и определяются по функциям Берга. Графики функций Берга для постоянной составляющей и трех первых гармоник представлены на рисунке 27.

Рисунок 27 - Графики функций Берга

Для определения коэффициентов необходимо определить значения a k для всех функций при требуемом угле отсечки q. Например, необходимо определить коэффициенты пропорциональности для q=80°. По графику a 0 определяем коэффициент пропорциональности для постоянной составляющей при значении q=80°. Он равен a 0 (80°)»0,28. Аналогично определяем значение коэффициентов a 1 (80°)»0,47 (по функции a 1), a 2 (80°)»0,24 (по функции a 2)? a 3 (80°)»0,05 (по функции a 3).

При умножении частоты необходимо получить колебание с требуемой частотой как можно большей амплитуды. Это возможно при максимальных значениях a k (q). В свою очередь максимум a k (q) наблюдается в точках максимума соответствующих функций Берга. Каждая функция имеет максимум при одном определенном угле отсечки. Угол отсечки, при котором наблюдается наибольшая амплитуда требуемой гармоники, называется оптимальным углом отсечки . Так оптимальным углом отсечки для второй гармоники является q=60°, а для третьей q=40°. Оптимальный угол отсечки задается напряжением смещения U 0 .

Данный метод позволяет получить колебания с кратностью 2 и 3. Это объясняется тем, что амплитуды гармонических составляющих, в спектре отклика, с большими номерами имеют слишком малую амплитуду. Задание требуемого оптимального угла отсечки для этих составляющих приведет к уменьшению амплитуды импульсов выходного тока и опять таки к получению колебаний с очень малой амплитудой.

Принципиальная схема умножителя частоты реализующего метод угла отсечки приведена на рисунке 28.

Рисунок 28 - Принципиальная электрическая схема умножителя частоты на транзисторе

В этом умножителе в качестве нелинейного элемента используется биполярный транзистор VT1, работающий в режиме отсечки коллекторного тока. На транзистор подается напряжение питания Ек и напряжение смещения U 0 . Входное напряжение поступает через колебательный контур L1 C1. Колебательный контур используется для получения большей стабильности частоты входного колебания, т. е. чтобы на вход транзистора поступало колебание содержащее только одну гармонику на требуемой частоте, и тем самым исключить искажение получаемого колебания. Транзистор трансформирует спектр колебания. Затем гармоника с требуемой частотой выделяется колебательным контуром L2 C2, используемым в качестве полосового фильтра.

Характеристикой умножителя частоты является коэффициент умножения, показывающий во сколько раз частота выходного колебания превышает частоту входного колебания

Ку= fвых/ fвх (39)

Как отмечалось выше коэффициент умножения данного умножителя не превышает 3. Для получения Ку>3 необходимо использовать многокаскадные схемы умножителя (последовательное включение нескольких умножителей). Например для получения Ку=6 необходимо последовательно включить два умножителя с Ку=2 и Ку=3.

Методы умножения частоты с помощью ППИ и радиоимпульса

Метод получения кратных частот с помощью ППИ основан на том, что в спектре периодической последовательности уже имеются гармонические составляющие на кратных частотах сигнала, т. е. кратных первой гармонике (рисунок 29). Поэтому из спектра необходимо только выделить гармонику с требуемой частотой. Для получения колебания с большей амплитудой, необходимо выделять гармонические составляющие первого лепестка спектра, причем амплитуда составляющих уменьшается меньше, если количество составляющих в лепестке больше. Таким образом, для умножения частоты используются периодические последовательности со скважностью более 14.

Данный метод позволяет увеличить частоту колебания в десятки раз.

Метод получения кратных частот с помощью радиоимпульса заключается в перемножении исходного колебания с другим высокочастотным гармоническим колебанием, т. е. осуществляется модуляция гармонической несущей импульсным колебанием. В этом случае спектр импульсного колебания переносится в область частот гармонического колебания, в результате чего формируется радиоимпульс. Затем из спектра полученного радиоимпульса выделяют гармонику с требуемой частотой. Данный метод позволяет получить колебание с частотой в сотни раз превышающее частоту исходного колебания.

Рисунок 29 - Умножение частоты с помощью ППИ: а) исходная ППИ c частотой fs и скважностью 17; б) спектр ППИ; в) полученное колебание с частотой 10fs

Умножители частоты. Простейшие пассивные умножители частоты выполняются на основе искажения гармонического входного сигнала e m (t) в токе безынерционного нелинейного элемента с характеристикой и ь1Х (е ьх). В выходной цепи такого нелинейного элемента включается цепь для выделения (фильтрации) высших частотных компонент тока / вых (/).

Оценим эффективность работы таких умножителей частоты в зависимости от кратности п. Аппроксимируем характеристику нелинейного элемента гладкой экспоненциальной функцией

где / 0 -ток при e w = 0; а - множитель с размерностью В" 1 .

Запишем гармонический входной сигнал в виде


Рис. 3.11.

где Е - начальное смещение; U BX - амплитуда входного сигнала умножителя; со - частота входного сигнала.

Тогда амплитуду л-й гармоники тока /1„ такого нелинейного элемента можно выразить через модифицированную функцию Бесселя J n (x) порядка л в виде

где

При малых входных амплитудах х = аU BX « п функция Бесселя в формуле (3.4) заменяется асимптотическим выражением

На рис. 3.11 пунктирной линией показано отношение амплитуды тока л-й гармоники к амплитуде тока первой гармоники для гладкой экспоненциальной нелинейности при малом сигнале по формуле (3.5).

При больших амплитудах входного сигнала в таком узле возникает эффект ограничения выходного тока, а в пределе нелинейность можно считать двухуровневой:

где / 0 - коэффициент с размерностью тока, имеющий физический смысл уровня ограничения; Е" - напряжение отсечки тока.

Угол отсечки тока с учетом формулы (3.4) определяется соотношением cos0 = (Е - Е") / U вх, а высшие гармоники тока 10 п вместо формулы (3.5) выражаются соотношением

Если подбирать для каждой кратности л угол отсечки 0 так, чтобы множитель sin л0 в числителе формулы (3.7) был равен единице, то из формулы (3.7) следует, что амплитуды высших гармоник тока убывают обратно пропорционально номеру гармоники, а их мощность, соответственно, обратно пропорционально квадрату номера гармоники. На рис. 3.11 штрихпунктирной линией показано отношение амплитуды тока л-й гармоники к амплитуде тока первой гармоники для двухуровневой нелинейности по формуле (3.6).

Если использовать кусочно-линейную аппроксимацию характеристики нелинейного элемента

где S - коэффициент с размерностью A/В, имеющий физический смысл крутизны характеристики нелинейного элемента, то вместо формулы (3.5) или (3.7) амплитуда тока л-й гармоники П п выражается через коэффициенты кусочно-линейного разложения косинусоидального импульса с отсечкой:

(3.8)

Для л = 1 справедливо выражение а для

л? 2 нужно использовать выражение

. Для каждой кратности умножения имеется оптимальный угол отсечки 0 ОПТ = тс/л, при котором амплитуда тока этой гармоники максимальна. Отношение /„//, амплитуд тока л-й и 1-й гармоник для оптимальных значений угла отсечки 0 ОПТ выражается соотношением

На рис. 3.11 сплошной линией показана (по формуле (3.9)) зависимость /„//, от кратности л при полигональной аппроксимации и оптимальном угле отсечки.

Из рис. 3.11 следует, что токи высших гармоник тока при безынерционном нелинейном преобразовании и оптимальном выборе угла отсечки убывают в среднем обратно пропорционально кратности л, а их мощности - обратно пропорционально квадрату кратности. Выделение из импульсов тока составляющей нужной гармоники с хорошей чистотой спектра также затрудняется при высокой кратности, так как требует высоких трудно реализуемых значений добротности частотно-избирательных полосно-пропус- кающих фильтров. Поэтому простейшие умножители частоты используются лишь при малой кратности умножения л = 2 и л = 3 с использованием оптимальных углов отсечки.

Из формулы (3.8), кроме того, следует, что выбором угла отсечки 0 О = п/(п - 1) можно добиться нулевой амплитуды тока одной из соседних мешающих гармоник. Например, амплитуда тока третьей гармоники нулевая при 0 = 90°, четвертой - при 0 = 66°, пятой - при 0 = 52 е, шестой - при 0 = 43 е, седьмой - при 0 = = 38 е, восьмой - при 0 = 33 е. Эту особенность можно учитывать для улучшения фильтрации мешающих спектральных компонент в умножителях частоты.

Умножитель частоты высокой кратности без выделения на выходе одной гармонической составляющей можно выполнить на основе формирования из гармонического входного сигнала с частотой / вх коротких прямоугольных видеоимпульсов в моменты перехода входного напряжения через нуль с положительной производной в соответствии с формулой (3.6). Такую схему называют генератором гармоник и используют для формирования сетки одновременно множества спектральных составляющих с фиксированным шагом по частоте. На рис. 3.12 представлен амплитудный спектр мощности высших гармоник для периодической последовательности видеоимпульсов, когда 0 = я/8, т.е. длительность сформированного импульса в 16 раз меньше, чем период колебания входной частоты.

Спектральные компоненты колебания, представленного на рис. 3.12, имеют частоты nf m , огибающая их мощности Р„ подчиняется закону

где Р 0 - мощность постоянной составляющей сигнала.


Рис. 3.12.

Недостатками такого умножителя частоты являются, во-первых, снижение с ростом кратности эффективности преобразования мощности входного сигнала в мощность нужной гармоники, пропорциональное квадрату кратности; во-вторых, уменьшение мощности гармоник вблизи значений кратности л, примерно равных скважности импульсов q = я/0. Кроме того, с ростом кратности усложняется задача подавления с нужной глубиной составляющих, имеющих частоту выше и ниже выделяемой.

Умножение частоты на основе нелинейных реактивных элементов (варакторов) позволяет передать значительную часть мощности входной частоты в нагрузку на выделяемой гармонике. Соотношения Мэнли-Роу доказывают, что принципиально возможно при помощи нелинейного реактивного элемента преобразовать до 100 % мощности входного сигнала на частоте со в мощность сигнала на произвольной гармонике, имеющей частоту лее, если электрическая цепь с нелинейным реактивным элементом по входу имеет ничтожно малое сопротивление для всех частот, кроме входной, а по выходу - ничтожно малое сопротивление для всех частот, кроме выходной. Однако для таких умножителей отсутствует развязка между входной и выходной цепями с общим для них реактивным нелинейным элементом. С ростом кратности умножения растут трудности построения линейных фильтрующих цепей с указанными свойствами.

Во многих случаях частота со входного сигнала умножителя изменяется в процессе работы, так что применение резонансных фильтрующих цепей затруднительно. Широкополосные умножители частоты строят без использования резонансных цепей, выделяющих нужную гармонику. Балансная схема (рис. 3.13) умножителя частоты на основе двух одинаковых нелинейных элементов (НЭ) с противофазным возбуждением через разветвитель (Р) позволяет скомпенсировать либо четные, либо нечетные гармоники на выходе. Для компенсации нечетных гармоник выходы каналов складываются синфазно в сумматоре (С), а для компенсации четных - вместо него включается сумматор противофазных сигналов, подобный разветвителю Р.

Балансные схемы при высокотехнологичном интегральном исполнении уменьшают уровень ближайших по кратности мешающих


Рис. 3.13.


Рис. 3.14.

спектральных компонентов на 30... 35 дБ. Выходной полосно-про- пускающий фильтр (ППФ) для сохранения широкополосности умножителя выполняется в виде последовательного включения фильтра нижних частот, ослабляющего компоненты с частотами более низкими, чем выделяемые, и фильтра верхних частот (гар- моникового фильтра), который не пропускает на выход гармоники более высокой кратности. Например, в балансном удвоителе частоты (п = 2) углы отсечки в нелинейных элементах (см. рис. 3.13) следует выбрать около 90°, так что амплитуда тока ближайшей к выделяемой высшей гармоники с номером п = 3 будет ослаблена на 20...30 дБ за счет выбора угла отсечки, а за счет балансности дополнительно на 30...35 дБ будут ослаблены составляющие первой и третьей гармоник. Удвоители частоты по балансной схеме (см. рис. 3.13) могут удовлетворительно работать при изменении частоты входного сигнала в несколько раз - на 1 - 2 октавы.

Удвоители и утроители частоты, как правило, выполняются пассивными, а умножители частоты - более высокой кратности, иногда - активными. Активный умножитель частоты в виде системы фазовой автоподстройки частоты колебаний ГУН с делителем частоты в кольце авторегулирования строится по схеме, представленной на рис. 3.14. В такой схеме частота ГУН выбирается примерно кратной частоте входного сигнала. Делитель частоты с фиксированным коэффициентом деления :п понижает частоту до значения, близкого к / вх, импульсно-фазовый дискриминатор (ИФД) сравнивает фазы входного сигнала и колебания поделенной частоты ГУН, а отфильтрованный управляющий сигнал е у через цепь обратной связи поступает на вход управления частотой ГУН, образуя тем самым систему фазовой автоматической подстройки частоты (ФАПЧ). Подробнее схемы такого вида рассмотрены в гл. 5.

Недостатком умножителя частоты, представленного на рис. 3.14, является возможность выхода системы ФАПЧ из полосы синхронизма при значительных вариациях собственной настройки ГУН. Выпускаются активные умножители частоты с кратностью от 3 до 64 при выходной частоте до 100 ГГц.

В умножителях частоты на электровакуумных приборах СВЧ, например на пролетных клистронах, в которых входной резонатор настроен на частоту гармоники входного сигнала, а выходной - на кратную частоту, наибольшая выходная мощность убывает с ростом кратности обратно пропорционально л, т.е. значительно слабее по сравнению с умножителями частоты на безынерционных активных элементах. Это связано с отличиями в характере группирования электронов в таких приборах. Поэтому такие умножители частоты имеют более высокий порог применимости по кратности.

В умножителях частоты на катушках с ферромагнитным материалом, работающим в режиме насыщения, гармоническое входное напряжение создает импульсный ток в выходной цепи из-за процесса перемагничивания сердечника. Такие узлы имеют ограничение по верхней рабочей частоте, где могут применяться цепи с сосредоточенными индуктивностями на феррите. Преобразование мощности входного гармонического колебания сверхвысокой частоты до 3 ГГц в форму коротких импульсов с высоким содержанием высших гармоник может производиться с помощью диодов с накоплением заряда и резким восстановлением.

В табл. 3.2 представлены параметры некоторых моделей интегральных широкополосных умножителей и делителей частоты. Модель D-0840 представляет собой пассивный диодный удвоитель частоты сигналов с необычайно широким диапазоном входных частот - коэффициент перекрытия по частоте kf= 5. Его средний по диапазону коэффициент ослабления по мощности составляет -15 дБ. Активный утроитель частоты АТА-0304 имеет при коэффициенте перекрытия по частоте k f - 1,33 мощность выходного сигнала 15 дБмВт. Это обеспечено встроенным широкополосным усилителем мощности с полосой частот 9... 12 ГГц. В умножителе частоты в 5 раз модели МАХ5М65075 усилитель мощности выходного сигнала обеспечил высокий уровень выходной мощности, а встроенные последовательно включенные на выходе фильтры нижних частот (с полосой 12 ГГц) и фильтр верхних частот (с полосой 1,5 ГГц) обеспечили улучшенный (до -40 дБ) уровень ослабТаблица 3.2. Параметры интегральных широкополосных умножителей и делителей частоты

умножителя или делителя

Входная цепь

Выходная цепь

S P (F),

дБ/Гц, F= 100 кГц

Модель, сайт

/>«, дБм Вт

1 ВЫХ 1

Пассивный

D-0840, www. markimicrowave.com

АТА-0304, www. markimicrowave.com

HMC445LP4, www. hittite.com

DV-1826, www. markimicrowave .com

HMC437MS8G, www. hittite.com

www.inphi-corp.com

Примечание. х2 - удвоитель частоты; хЗ - утроитель частоты; х5 - активный умножитель частоты в 5 раз; х 16 - активный умножитель частоты в 16 раз; +2 - активный делитель частоты на 2...

ления нежелательных гармонических составляющих выходного сигнала. В умножителях и делителях частоты кроме параметра, характеризующего гармонический состав выходного сигнала - ПСС ВЫХ, указывают значения ПСС ВХ, который показывает долю нежелательных спектральных компонент, появляющихся во входной цепи из-за обратного прохождения. Как правило, значение ПСС ВХ на

10...20 дБ ниже, чем ПСС ВЫХ. Очень трудная задача решена разработчиками и изготовителями умножителя частоты в 16 раз модели HMC445LP4: в выходной цепи сетка одновременно присутствующих гармоник имеет шаг 0,6...0,7 ГГц по сравнению со средней частотой 10... 11 ГГц. В этой модели использована балансная схема для компенсации нечетных 15-й и 17-й гармоник, выходной полосовой диэлектрический фильтр, но тем не менее уровень ПСС ВЫХ превышает -20 дБ. Можно отметить весьма низкий уровень собственных фазовых шумов S 9 (F) для этой модели.

Делители частоты. Деление частоты гармонического входного сигнала на два происходит в параметрических цепях с нелинейной реактивностью, например с варикапом или с ферритом. Такое параметрическое деление частоты на два используется в диапазоне входных частот менее 3...40 ГГц, а при необходимости получения более высокого коэффициента деления такие узлы включаются каскадно. Достоинством параметрических варакторных делителей частоты является широкополосность менее октавы, так как в них не используются резонансные цепи.

В диапазоне входных частот менее 1 ГГц возможно применение цифровых счетчиковых делителей частоты - в таких узлах коэффициент деления частоты устанавливается произвольным, а ограничение на нижнюю рабочую частоту и соответственно на наибольший коэффициент деления частоты отсутствует. Выходной сигнал цифровых делителей частоты двухуровневый - имеет ме- андровую форму импульсов со скважностью 2. При необходимости выделения из них гармонической составляющей поделенной частоты производится частотная обработка с помощью фильтра нижних частот с частотой среза, равной наибольшему значению выходной частоты.

Умножители и делители частоты вносят не только регулярные, но и случайные погрешности в фазу выходного сигнала, которые зависят от их схемы, конструкции узла, кратности, качества фильтрации и других дестабилизирующих факторов. Поэтому нестабильность фазы и частоты выходного сигнала умножителя или делителя частоты несколько выше, чем входного. Зависимость интенсивности собственного фазового шума вблизи несущей частоты от частоты отстройки определяется схемой и режимом работы нелинейного элемента узла преобразования частоты, который может быть разработан специально как малошумящий. Например, в делителях частоты на два диапазона 1... 2 ГГц уровень СПМ собственного «белого» фазового шума на выходе S^(F) составляет -155...-140 дБ/Гц при отстройке от несущей частоты F= 100 кГц.

В делителях частоты, как и в умножителях частоты, существует кратная периоду более высокой частоты неопределенность начального сдвига между моментами времени перехода через нуль входного и выходного колебаний. На этапе включения источника питания или в результате действия импульсной помехи фаза колебания более высокой частоты может измениться на целое число периодов своего колебания по сравнению с фазой низкочастотного колебания. Разработчик синтезатора сигналов должен оценить последствия такого явления исходя из назначения и свойств радиотехнической системы, в которой он будет использоваться.

Если входной сигнал умножителя частоты в л раз имеет периодическую угловую (фазовую или частотную) модуляцию с девиацией частоты Д/и модулирующей частотой F M , то на его выходе модулирующая частота не изменится, а девиация частоты составит лД/ При этом уровень мощности боковых полос модуляционного спектра по сравнению с мощностью несущего колебания возрастает на 20 lg я, т.е. для удвоителя - на 6 дБн.

Делитель частоты на два модели DV-1826 имеет входные сигналы миллиметрового диапазона, так что для размещения элементов поверхностного монтажа использованы высокотехнологичные решения. Делители частоты моделей HMC437MS8G и 25673DV-QFN выполнены как счетчиковые, поэтому коэффициент деления может быть нечетным, а нижний предел рабочей частоты отсутствует - микросхемы производят широкополосное деление частоты в указанное число раз в любом низкочастотном диапазоне вплоть до постоянного тока. Микросхема делителя частоты на восемь модели 25673DV-QFN выполнена для работы в расширенном температурном диапазоне: от -55 до +125 °С. Можно заметить, что собственные фазовые шумы цифровых делителей частоты существенно ниже, чем, например, для ГУН того же диапазона.

Цепи фазовой подстройки частоты часто используются для умножения частоты. Раньше для этой цели использовались схемы генераторов гармоник с последующим выделением соответствующей гармоники узкополосным фильтром.

Намного лучше для этой цели подходит схема фазовой автоподстройки частоты. В этой схеме относительно просто можно изменять коэффициент умножения схемы изменением коэффициента деления в цепи обратной связи. Для умножения частоты используется либо цифровая, либо полностью цифровая схема фазовой автоподстройки частоты.

Умножители частоты в настоящее время обычно используются для увеличения внутренней тактовой частоты больших интегральных микросхем. В этих микросхемах цифровая схема фазовой автоподстройки частоты получила название аналогового умножителя тактовой частоты, а полностью цифровая схема ФАПЧ получила название цифрового умножителя частоты.

Для увеличения тактовой частоты цифровых микросхем чаще используется полностью цифровая схема умножения частоты, а для смешанных схем или схем, предназначенных для цифровой обработки сигналов предпочтительнее использование аналогового умножителя частоты. Это связано со спектральной чистотой выходного сигнала. Аналоговая схема обеспечивает более стабильное колебание, но при этом медленнее выходит на рабочий режим.

Пример принципиальной схемы аналогового умножителя тактовой частоты приведен на рисунке 1.

Рисунок 1. Принципиальная схема аналогового умножителя частоты.

В этой схеме опорный генератор с кварцевой стабилизацией частоты реализован на логических элементах D4 и D6. Генератор, управляемый напряжением, реализован на элементах D1 и D3. Учитывая, что это RC-генератор, он обладает очень большим диапазоном перестройки частоты. В качестве регулировочного элемента использован полевой транзистор VT1. Он может изменять сопротивление канала в пределах нескольких тысяч. (Во столько же раз будет перестраиваться и частота ГУН.) Фазовый компаратор реализован на микросхемах D7, D8 и D10. Полосу захвата цепи фазовой автоподстройки определяет фильтр низкой частоты, реализованный на конденсаторе C4.

Данный умножитель частоты допускает только шестнадцать ступеней регулировки тактовой частоты. Код, определяющий коэффициент умножения вводится через упрощенный последовательный порт,собранный на сдвиговом регистре D2. В зависимости от кода частота на выходе изменяется в 16 раз.

В более сложных схемах умножителей частоты вводятся делители между опорным генератором и фазовым компаратором. Это позволяет реализовывать дробные коэффициенты умножения частоты.

В передающих и приемных трактах систем связи, а также в некоторых измерительных устройствах широко применяется нелинейное преобразование гармонического колебания, в результате которого частота этого колебания увеличивается в k раз, k – целое положительное число. Такое нелинейное преобразование называется умножением частоты, а устройство, его реализующее, – умножителем частоты.

Таким образом, умножитель частоты – это устройство, которое увеличивает в k раз частоту гармонического колебания. Если на вход умножителя подается сигнал , то на выходе формируется сигнал , причем некоторые умножители увеличивают в k раз и начальную фазу, т.е. .

Умножители частоты используются при формировании колебаний с высокой стабильностью частоты. Это относится прежде всего к формированию высокочастотных колебаний при кварцевой стабилизации частоты задающего генератора. Собственная частота кварца определяется выражением , b – толщина пластинки кварца. Для частоты более 50 МГц пластинка должна иметь толщину порядка сотых долей миллиметра. Такие пластинки изготовить очень трудно, они имеют слабую механическую прочность. Поэтому такой метод стабилизации используют в генераторах с частотой до 5 МГц, в отдельных случаях до 50 МГц. Колебания более высоких частот получают с помощью умножителей частоты.

В качестве умножителей частоты наиболее часто используют схему нелинейного резонансного усилителя с контуром, настроенным на требуемую частоту. Как было показано ранее, в спектре импульсов тока нелинейного усилителя на транзисторе (работающего в режиме с отсечкой тока) имеются гармонические составляющие с частотами, кратными частоте входного сигнала. Если контур усилителя настроить на частоту k- й гармоники, то на выходе будет сформировано гармоническое колебание с частотой этой гармоники.

Известно, что амплитуда k -й гармоники определяется выражением . Следовательно, режим работы усилителя как умножителя частоты должен быть таким, чтобы амплитуда нужной гармоники была наибольшей. При определенном значении это обеспечивается оптимальным углом отсечки, при котором = max.

Практически доказано, что такой угол отсечки, при котором графики имеют хорошо выраженные максимумы, равен . Знание угла отсечки дает возможность определить амплитуду входного сигнала и напряжение рабочей точки умножителя частоты:

, .

Здесь – средняя крутизна ВАХ транзистора для k -й гармоники, – напряжение отсечки.

Рассмотренная схема умножителя может обеспечить умножение частоты в 2, реже в 3 раза и не более, ибо амплитуды высших гармоник коллекторного тока быстро убывают с увеличением их частоты. В тех случаях, когда требуется умножение частоты сигнала в десятки и более раз, возможно многократное умножение частоты путем последовательного включения нескольких умножителей. Однако более целесообразно использовать другой метод.


Известно, что спектр периодической последовательности видеоимпульсов содержит бесконечное число гармонических составляющих с частотами, кратными частоте следования импульсов . Амплитуды этих гармоник при достаточно велики в широком диапазоне частот (ширина основного лепестка спектра равна ). Поэтому с помощью узкополосных фильтров можно выделить гармоники с частотами при значениях более десяти.

Схема такого умножителя содержит нелинейный преобразователь гармонического колебания в периодическую последовательность очень коротких по длительности видеоимпульсов с частотой повторения, равной частоте входного колебания, т.е. . Необходимая гармоника спектра этих импульсов выделяется фильтром.

Еще больший коэффициент умножения можно получить, если использовать периодическую последовательность радиоимпульсов. Спектр такого сигнала сосредоточен в области частоты несущего колебания. В составе этого спектра содержатся гармонические составляющие с частотами , значительно превышающими частоту входного колебания. Схема такого умножителя сложная, так как должна содержать импульсный амплитудный модулятор, преобразующий колебания с частотой в периодическую последовательность радиоимпульсов с частотой следования .

Умножение частоты можно осуществить также с помощью параметрических цепей (например, цепей с варактором). В рамках данного учебного пособия эта проблема не рассматривается.