Принципиальные схемы для дома. Управление приборами через сом-порт компьютера

  • Дата: 20.07.2023

Схема подключение датчика движения своими руками

Бывает что нужно установить на даче,или в доме освещение которое будет срабатывать при движение или человека или еще кого либо.

С этой функцией хорошо справиться датчик движения, который и был заказан мной с Aliexpress. Ссылка на который будет внизу. Подключив свет через датчик движения, при прохождении человека через его поле видения, свет включается, горит 1 минуту. и снова выключается.

В данной статье рассказываю, как же подключить такой датчик, если у него не 3 контакта, а 4 как у этого.

Блок питания из энергосберегающей лампочки своими руками

Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

Регулятор скорости вентилятора своими руками

Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .

Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.

Монтаж довольно плотный, но это было обусловлено размерами корпуса..

Освещение для растений своими руками

Освещение для растений своими руками

Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .

Регулятор яркости своими руками

Регулятор яркости своими руками

Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.

Термостат для холодильника своими руками

Термостат для холодильника своими руками

Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог - холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода - они сигнализируют что агрегат включен или температура выше верхнего порога.

Датчик влажности почвы своими руками

Датчик влажности почвы своими руками

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.

Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.

Схема питания люминесцентной лампы

Схема питания люминесцентной лампы.

Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .

USB клавиатура для планшета

USB клавиатура для планшета

Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно - чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.

Часы на ИН-14 лампах своими руками

Часы на ИН-14 лампах своими руками

Давно хотел выложить статью,по изготовлению своими руками часов на лампах ИН-14 ,или как еще отзываются-часы в стиле стим-панк.

Постараюсь поэтапно и останавливаясь на ключевых моментах изложить только самое главное. Индикация часов хорошо видна как днем так и ночью, и сами по себе очень красиво смотрятся,особенно в хорошем деревянном корпусе.Общем,приступаем.

  • 29. Предотвратить проникновение вредоносных программ на подключенный к сети компьютер помогает …
  • 30. Проверка состава и работоспособности компьютерной системы – это назначение __________________ программного обеспечения.
  • 33. Расположите прообразы современных вычислительных устройств, появившиеся в механический период, в правильной последовательности.
  • 34. Гарвардская архитектура вычислительной системы отличается от принстонской
  • 35. Один из физических каналов ввода-вывода компьютера – разъем – называется аппаратным(-ой) …
  • 36. Многопользовательский характер работы операционной системы достигается благодаря…
  • 39. Процесс создания экспертных систем не включает этап…
  • 40. Моделирование – это…
  • 41. И компилятор, и интерпретатор …
  • 42. Элементы массива в памяти компьютера упорядочены по...
  • 43. В объектно-ориентированном программировании понятию объекта соответствует схема…
  • 45. Независимую связь между несколькими парами компьютеров в сети не обеспечивают …
  • 46. Сети с отличающимися протоколами передачи данных объединяют с помощью …
  • 47. Обеспечивает доступ к web-документам и навигацию между этими документами по гиперссылкам сервис …
  • 48. Безопасность циркулирующих данных через открытые каналы связи обеспечивает …
  • 49. Количество информации в слове «Информатика» при условии, что для кодирования используется 32-значный алфавит, равно _______ битам(-ов).
  • 57. Определение целей моделирования осуществляется на этапе …
  • 58. Виды моделирования
  • 59. Перевод исходной программы на языке программирования в эквивалентную программу на языке машинных команд называется
  • 60. Сеть, где каждый компьютер может играть роль как сервера, так и рабочей станции, имеет ________________ архитектуру.
  • 61. При создании цифровой подписи задается(-ются) …
  • 62. Количество информации, которое содержит сообщение, уменьшающее неопределенность знания в 2 раза, называется …
  • 63. Модему, передающему сообщения со скоростью 28 800 бит/сек., для передачи 100 страниц текста в 30 строк по 60 символов каждая в кодировке ascii потребуется ______ секунд(-ы).
  • 65. Укажите последовательность логических операций в порядке убывания их приоритетов.
  • 66. Электронная схема, запоминающая 1 бит информации, – это …
  • 67. Прикладной программой является
  • 79. Электронные схемы для управления внешними устройствами – это …
  • 80. Промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена, называют …
  • 81. В состав интегрированной системы программирования входят …
  • 82. Если размер кластера на жестком диске 512 байт, а размер файла 864 байт, то на диске под него будет отведено (то есть недоступно для других файлов) _______ кластер(а).
  • 84. Верно утверждение, что …
  • 85. Протоколы, которые работают на прикладном уровне модели osi, – это
  • 86. Для кодирования 20 различных состояний достаточно ________ двоичных разрядов.
  • 87. Из чисел 105987, 193, 7345, 2850 к записи числа в восьмеричной системе счисления относится …
  • 88. Персональные компьютеры относятся к ________поколению эвм.
  • 90. Исполняемые файлы имеют расширения имени …
  • 91. Блок-схема цикла с постусловием имеет вид …
  • 92. Сетевую топологию, где несколько компьютеров объединяется в сеть коммутатором, называют …
  • 93. В кодировке ascii слово мегабайт займет _______ байтов(-а). Решение:
  • 94. Последняя цифра числа 7896543126710 в двоичной системе счисления равна …
  • 79. Электронные схемы для управления внешними устройствами – это …

      Транзисторы представляют собой элементарные полупроводниковые приборы, которые сегодня являются основными элементами для построения микросхем логики, памяти, процессора и других устройств компьютера.

      Системные шины – это наборы проводников для передачи данных, адресов и сигналов управления между устройствами компьютера.

      Контроллеры ПРАВИЛЬНЫЙ ОТВЕТ

    80. Промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена, называют …

      Внешняя память – это энергонезависимая память, предназначенная для длительного хранения программ и данных. К устройствам внешней памяти относят накопители на жестких, гибких магнитных дисках, оптических компакт-дисках, накопители на магнитной ленте, флэш-накопители. Она существенно медленней внутренней оперативной и сверхоперативной кэш-памяти.

      кэш-памятью ПРАВИЛЬНЫЙ ОТВЕТ

    81. В состав интегрированной системы программирования входят …

      текстовый редактор – ПРАВИЛЬНЫЙ ОТВЕТ

      калькулятор

      редактор связей – ПРАВИЛЬНЫЙ ОТВЕТ

      графический редактор

    Решение:

    Процесс создания программ включает в себя следующие этапы: составление исходного кода программы на языке программирования; этап трансляции, необходимый для создания объектного кода программы; создание загрузочного модуля, готового к исполнению. В самом общем случае для создания программы на выбранном языке программирования нужно иметь следующие компоненты: 1.Текстовый редактор

    2. Компилятор . Исходный текст с помощью программы-компилятора переводится в промежуточный объектный код.

    3. Редактор связей , который выполняет связывание объектных модулей и машинного кода стандартных функций, находя их в библиотеках, и формирует на выходе работоспособное приложение – исполнимый код.

    82. Если размер кластера на жестком диске 512 байт, а размер файла 864 байт, то на диске под него будет отведено (то есть недоступно для других файлов) _______ кластер(а).

    Решение:

    Каждый жесткий диск состоит из пакета пластин. На каждой стороне каждой пластины имеются концентрические кольца, называемые дорожками. Каждая дорожка разбивается на фрагменты, называемые секторами, причем все дорожки на диске имеют одинаковое количество секторов. Сектор представляет собой минимальную физическую единицу хранения данных на внешнем носителе . Размер сектора всегда представляет собой одну из степеней числа 2, и почти всегда равен 512 байт. Группы секторов условно объединяются в кластеры. Кластер является наименьшей единицей адресации к данным. Когда файл записывается на диск, файловая система выделяет соответствующее количество кластеров для хранения данных файла. Например, если каждый кластер равен 512 байт, а размер сохраняемого файла составляет 800 байт, то для его хранения будут выделены два кластера.

    Допустим, ваш файл располагается в 10 кластерах размером по 1024 Кб, причем в последнем – десятом кластере он занимает всего десять байт. Что происходит с оставшимся почти свободным килобайтом? Ничего. Он просто пропадает для пользователя.

    83. С помощью цифрового фотоаппарата получено изображение с разрешением 3456x2592 точек и глубиной цвета 3 байта/пиксель. Для просмотра используется монитор с установленными параметрами разрешения 1280x1024 и цветопередачей 16 битов. Информационный объем изображения при отображении его на этом мониторе уменьшится в _____ раз (получившееся значение округлить).

    Решение:

    Для подсчета необходимо учесть разрешение и глубину цвета у изображения и монитора, при этом находим отношение: Здесь глубина цвета приводится к единой величине – битам, которая и используется для расчета. Так, у изображения будетточек, а для одной точки выделяется, тогда размер изображения равенАналогично для монитора, но здесь при отображении на экранеточек на одну точку выделяется 16 битов.

    Автор разработал программу и устройство для управления различными электро и радиоприборами с помощью компьютера. Устройство подключают к одному из СОМ-портов, а управлять приборами можно как с помощью экранных клавиш, так и внешних датчиков.

    Схема устройства показана на рис.1. Его основа - микросхема 74HC595, представляющая собой 8-разрядный сдвиговый регистр с последовательным вводом и последовательным и параллельным выводами информации. Параллельный вывод осуществляется через буферный регистр с выходами, которые имеют три состояния. Информационный сигнал подают на вход SER (вывод 14), сигнал записи - на вход SCK (вывод 11), а сигнал вывода - на вход RSK (вывод 12). На микросхеме DA1 собран стабилизатор напряжения 5 В для питания регистра DD1.

    Рисунок 1. Схема устройства

    Устройство подключают к одному из СОМ-портов компьютера. Информационные сигналы поступают на контакт 7 розетки XS1, сигналы завиписи информации - на контакт 4, а сигналы вывода информации - на контакт 3. Сигналы СОМ-порта согнласно стандарту RS-232 имеют уровни около -12 В (лог.1) и около +12 В (лог.0). Сопряжение этих уровней с входными уровнями регистра DD1 выполнено с помощью резисторов R2, R3, R5 и стабилитронов VD1-VD3 с напряжением стабилизации 5,1 В.

    Сигналы управления внешними приборами формируются на выходах Q0-Q7 регистра DD1. Высокий уровень равен напряжению питания микросхемы (около 5 В), низкий - менее 0,4 В. Эти сигналы являются статическими и обновляются на момент поступления высокого уровня на вход RSK (вывод 12) регистра DD1. Светодиоды HL1-HL8 предназначены для наблюдения за работой устройства.

    Управление устройством осуществляется с помощью разработанной автором программы UmiCOM. Внешний вид главного окна программы показан на рис.2.

    Рисунок 2. Внешний вид программы UniCOM

    Псоле ее запуска следует выбрать свбодный СОМ-порт и скорость переключения выходов. В строки таблицы вводят состояние каждого из выходов устройства (высокий уроень - 1, низкий - 0 или пусто). Программа "перебирая" в рабочем цикле столбцы таблицы, устанавливает на выходах устройства соответствующие логические уровни. Занесенная в таблицу информация автоматически сохраняется при завершении работы программы и загружается вновь при ее следующем запуске. Для наглядности, в левой части окна программы подсвечены номера выходов, на которых установлен высокий уровень.

    Управление приборами можно осуществлять и с помощью внешних контактных датчиков, которые подключают к входам 1-3 и линии +5 В. Они должны работать на замыкание или размыкание контактов. Пример схемы подключения датчиков показан на рис.3.

    Рисунок 3. Подключение контактных датчиков

    При нажатии на экранную клавишу "Настройка входов" открывается окно "Согласование входов и выходов" (рис.4. ), где выбирают входы, которые будут изменять состояние выходов. Имитировать работу входов можно нажимая на экранные клавиши "1", "2", "3" основного окна программы. В тех случаях, когда приборами нельзя управлять с помощью логических уровней, следует применить реле, схема подключения которого показана на рис.5 , или транзисторную оптопару (рис.6. ).

    Рисунок 4. Согласование входов и выходов

    Рисунок 5. Схема подключения реле

    Рисунок 6. Схема подключения транзисторной оптопары

    Большинство деталей монтируют на печатной плате из односторонего фольгированного стеклотекстолита толщиной 1...1,5 мм, чертеж которой показан на рис.7. Резисторы R1-R6 монтируют на выводах розетки XS1.

    Рисунок 7. Чертеж печатной платы

    В устройстве применены резисторы С2-23. МЛТ, оксидные конденсаторы - К50-35 или импортные, розетка XS1 - DB9F. Помимо указанных на схеме стабилитронов, можно применить BZX55C5V1 или отечественные КС174А, светодиоды - любые. Питают устройство от стабилизированного или нестабилизированного источника питания нпаряжением 12 В и током до 100 мА.

    Данная книга посвящена возможностям персонального IBM-совместимого компьютера по сопряжению с внешними устройствами через параллельный, последовательный и игровой порты, которые имеются практически в любом современном ПК. В качестве внешних устройств выступают ЦАП и ЛЦП, схемы управления электромоторами, трансиверы, модемы, различные индикаторы, датчики и пр.; приводятся тексты программ управления с подробными комментариями.

    Книга предназначена для широкого круга читателей, интересующихся информатикой, электроникой и вычислительной техникой. Она будет полезна студентам технических вузов и колледжей в качестве учебного пособия при изучении аппаратной части ПК, а также радиолюбителям, которые стремятся наиболее полно использовать возможности домашнего компьютера. Начинающие программисты найдут здесь большое количество исходных текстов программ, а инженеры-электронщики почерпнут новые идеи для красивой реализации своих профессиональных проектов.

    Книга посвящена проблемам сопряжения персонального компьютера с современными электронными устройствами при помощи параллельных, последовательных и игровых портов. В ней приведено много примеров, показывающих, как ПК может собирать информацию из окружающего мира и управлять внешними устройствами. Кроме того, предлагается программное обеспечение, написанное на языках Turbo Pascal и Visual Basic. Это сочетание аппаратной и программной части и раскрывает суть понятия "сопряжение компьютера".

    Наиболее известны параллельный, последовательный и игровой порты, которые встроены практически в каждый ПК. Поэтому схемы, рассмотренные в данной книге, можно использовать со всеми типами компьютеров: настольными, портати иными, карманными IBM PC и совместимыми с ними, Macintosh, Amiga, PSTON1 и др.

    Книга предназначена для широкого круга читателей, в числе которых: специалисты, использующие, компьютер для взаимодействия с внешним миром; программисты, которые разрабатывают аналогичное ПО; инженеры, мечтающие соединить цифровые электронные устройства с ПК; студенты, желающие на практике усвоить, как компьютер сопрягается с внешними устройствами; все, кто изучает новейшие способы применения компьютеров.

    Год выпуска: 2001
    Ан П.
    Жанр:
    Издательство: М.: ДМК Пресс
    Формат: DjVu
    Размер: 3,1 МБ
    Качество: Отсканированные страницы
    Количество страниц: 320

    Программа для чтения книги: DjVuReader

    Предисловие 9
    1. Параллельный, последовательный и игровой порты 13
    1.1. Параллельный порт 13
    1.1.1. Разъемы 14
    1.1.2. Внутреннее устройство 15
    1.1.3. Программное управление 19
    1.2. Последовательный интерфейс RS232 26
    1.2.1. Последовательная передача данных 26
    1.2.2. Разъем и кабель порта RS232 28
    1.2.3. Внутреннее аппаратное устройство 29
    1.2.4. Программное управление 35
    1.3. Игровой порт 41
    1.3.1. Разъем 42
    1.3.2. Внутреннее аппаратное устройство 42
    1.3.3. Программное управление 44

    2. Необходимое оборудование 49
    2.1. Источники питания 49
    2.1.1. Источник питания постоянного тока 49
    2.1.2. Источники питания +5, -5, +12, -12 В 50
    2.1.3. Опорные напряжения 54
    2.1.4. Преобразователи напряжения 55
    2.1.5. Схемы источников питания с гальванической развязкой 56
    2.2. Логические пробники 57
    2.3. Цифровые и аналоговые генераторы сигналов 57
    2.3.1. Цифровые генераторы сигналов 58
    2.3.2. Аналоговые генераторы сигналов 60
    2.4. Экспериментальные платы параллельного, последовательного и игрового портов 62
    2.4.1. Экспериментальная плата параллельного порта 62
    2.4.2. Экспериментальная плата последовательного порта 65
    2.4.3. Экспериментальная плата игрового порта 67
    2.4.4. Устройство экспериментальных плат 69
    2.5. Средства разработки плат 71

    3. Программы управления экспериментальными платами 75
    3.1. Программное обеспечение для экспериментальной платы параллельного порта 76
    3.1.1. Описание программы CENTEXP.PAS 76
    3.1.2. Описание программы CENTEXP 79
    3.2. Программное обеспечение для экспериментальной платы последовательного порта 84
    3.2.1. Описание программы RS232EXP.PAS 84
    3.2.2. Описание программы RS232EXP 88
    3.3. Программное обеспечение для экспериментальной платы игрового порта 93
    3.3.1. Описание программы GAMEEXP.PAS 94
    3.3.2. Описание программы GAMEEXP 98
    3.4. Программные библиотеки ресурсов 100

    4. Расширение возможностей параллельного, последовательного и игрового портов 113
    4.1. Расширение возможностей параллельного порта 113
    4.1.1. Увеличение количества линий ввода/вывода при помощи микросхем с малой степенью интеграции 113
    4.1.2. Увеличение количества линий ввода/вывода при помощи микросхемы 8255 116
    4.2. Расширение возможностей последовательного порта 123
    4.2.1. Преобразователи уровней RS232/TT/1 123
    4.2.2. Увеличение количества линий ввода/вывода с помощью UART 124
    4.2.3. Микросхема ITC232-A для сопряжения с последовательным портом 130
    4.3. Увеличение количества линий игрового порта 132
    4.4. Последовательно-параллельные преобразователи 132
    4.5. Параллельно-последовательные преобразователи 134
    4.6. Шифраторы и дешифраторы данных 135
    4.7. Шина l2C 143
    4.7.1. Принцип работы 144
    4.7.2. Временные диаграммы работы шины l2C 145
    4.7.3. Реализация на базе параллельного и последовательного портов... 146
    4.7.4. Микросхемы, поддерживающие стандарт!2С 147
    4.8. Последовательный периферийный интерфейс 147
    4.9. Шина MicroLAN 147
    4.10. Сопряжение между схемами ТТЛ и КМОП 148
    4.11. Защита цифровых линий ввода/вывода 149

    5. Управление внешними устройствами 152
    5.1. Мощные устройства коммутации 152
    5.1.1. Устройства коммутации на оптопарах 152
    5.1.2. Транзисторные устройства коммутации 152
    5.1.3. Устройства коммутации на основе схемы Дарлингтона 153
    5.1.4. Устройства коммутации на полевых транзисторах 153
    5.1.5. Устройства коммутации на МОП транзисторах с защитой 154
    5.2. Устройства управления светодиодами 155
    5.2.1. Стандартные светодиоды 155
    5.2.2. Маломощные светодиоды 156
    5.2.3. Многоцветные светодиоды 156
    5.2.4. Инфракрасные светодиоды 157
    5.3. Устройства управления реле 158
    5.3.1. Реле с сухими контактами 158
    5.3.2. Транзисторные устройства управления реле 159
    5.4. Мощные управляющие интегральные микросхемы 159
    5.4.1. Многоканальные управляющие интегральные микросхемы 159
    5.4.2. Буферные устройства управления с защелками 160
    5.5. Оптоэлектронные полупроводниковые реле на тиристорах 163
    5.6. Устройства управления двигателями постоянного тока 164
    5.7. Устройства управления шаговыми двигателями 166
    5.7.1. Устройства управления четырехфазными шаговыми двигателями.... 166
    5.7.2. Устройства управления двухфазными шаговыми двигателями 168
    5.8. Управление звуковыми устройствами 169
    5.8.1. Устройства управления пьезоэлектрическими динамиками, зуммерами и сиренами 170
    5.8.2. Устройства управления громкоговорителями 170
    5.9. Устройства управления дисплеями 172
    5.9.1. Многоразрядные светодиодные дисплеи со встроенными схемами управления 172
    5.9.2. Растровые светодиодные дисплеи со встроенными схемами управления 176
    5.9.3. Многоразрядные светодиодные растровые дисплеи со встроенными схемами управления 178
    5.9.4. Жидкокристаллические растровые дисплейные модули 181
    5.10. Устройства управления мускульными кабелями 186

    6. Измерение аналоговых величин 188
    6.1. Аналого-цифровые преобразователи 188
    6.1.1. АЦП с параллельным интерфейсом ввода/вывода 188
    6.1.2. АЦП с последовательным интерфейсом ввода/вывода 205
    6.1.3. Аналоговый процессор АЦП TSC500 217
    6.2. Преобразователи напряжение-частота 221
    6.2.1. Принципы преобразования напряжение-частота 221
    6.2.2. Преобразователь напряжение-частота LM331 222
    6.3. Цифровые датчики интенсивности света 224
    6.3.1. Линейная матрица световых детекторов TSL215 227
    6.3.2. Другие цифровые оптоэлектронные датчики 231
    6.4. Цифровые датчики температуры 232
    6.4.1. Термометр DS1620 233
    6.4.2. Цифровой температурный датчик 238
    6.4.3. Жидкокристаллические температурные модули 240
    6.5. Цифровые датчики влажности 243
    6.6. Цифровые датчики расхода жидкости 245
    6.7. Цифровые датчики магнитного поля 247
    6.7.1. Цифровой датчик FGM-3 индукции магнитного поля 247
    6.7.2. Цифровой датчик магнитного поля 248
    6.8. Радиосистемы точного времени 248
    6.9. Клавиатура 253

    7. Сопряжение компьютера с другими цифровыми устройствами 254
    7.1. Цифро-аналоговые преобразователи 254
    7.1.1. Простой ЦАП R-2R 254
    7.1.2. ЦАП с параллельным вводом ZN428 254
    7.1.3. ЦАП DAC0854 с последовательным интерфейсом ввода/вывода... 257
    7.2. Цифровые потенциометры 261
    7.3. Модули памяти 264
    7.3.1. Модуль EEPROM объемом 2 Кб с последовательным вводом/выводом ST93C56C 264
    7.3.2. EEPROM с шиной PC 270
    7.4. Системы отсчета реального времени 275
    7.5. Генераторы сигналов с цифровым управлением 281
    7.5.1. Программируемый таймер/счетчик 8254 282
    7.5.2. Генератор с числовым программным управлением HSP45102 288
    7.5.3. Программируемый генератор синусоидальных колебаний ML2036 292

    8. Сетевые приложения и удаленный доступ 293
    8.1. Телекоммуникационные схемы 293
    8.2. Интегральные схемы модемов 294
    8.3. Радиосвязь 295
    8.3.1. FM передатчик и приемник TMX/SILRX 296
    8.3.2. AM передатчик и приемник AM-TX1/AM-HHR3 299
    8.3.3. Эксперименты по передаче данных с помощью радиосвязи 299
    8.4. Модули приемопередатчиков 302
    8.4.1. Приемопередатчик BiM^^F 302
    8.4.2. Требования к передаваемым последовательным данным 304
    8.5. Модем для работы в бытовой электросети LM1893 305
    8.6. Интерфейс RS485 306
    8.7. Инфракрасные линии передачи данных 307

    Список литературы 312
    Предметный указатель 313

    6 идей бытовой автоматизации для изготовления своими руками

    (электронные схемы, описания работы)

    Данный прибор служит для поддержания и регулирования температуры, например в системе отопления. Термостат простой, надежный, не критичен к месту размещения и не боится морозов, может быть использован в автоматике систем отопления (термостат для отопления, термостат для инкубатора, термостат комнатный, термостат для теплиц), в системе защиты от перегрева, пожарной сигнализации, как термостат для теплых полов. Нагрузкой термостата может служить тэн, установленный в котле отопления, лампы инкубатора, трехфазное реле, нагревательный элемент, нагревательный элемент теплого пола, газовый электроклапан типа GSAV15R 1/2", для поддержания температуры в погребе, для поддержания температуры в гараже.

    Термостат содержит минимум элементов и как следствие очень надежен, не требует программирования. Схема термостата состоит из усилительного каскада на операционном усилителе AD822, термочувствительного диода, переменного резистора R2=10кОм для регулировки поддерживаемой температуры, R1 для установки гестерезиса.

    Термостат позволяет поддерживать температуру от 15 до 95 градусов.

    Плату с элементами и реле можно поместить в отдельную коробочку, которую как и термочувствительный диод закрепить непосредственно на котле. Диоды служат для отображения состояния термостата: диод 1 -- индикация питания, диод 2 -- индикация включения нагрузки.

    Щиток позволит вам автоматизировать такие функции как включать и выключать электроприборы по сотовому телефону. Где бы вы не находились, достаточно лишь набрать номер и дождаться гудков. Чтобы выключить нагрузку, нужно позвонить на номер щитка с другого номера (например, вставить другую сим-карту). Мощность управляемой нагрузки ограничена типом применяемого реле.

    Допустим, вы решили зимой посетить дачу, но чтобы по приезду не ждать несколько часов, пока она прогреется, просто набираете номер телефона, стоящего в щитке за пару часов до приезда.

    В моем случае использовался телефон nokia3310 с синтезатором мелодий. Длятого, чтобы телефон в щитке включал нагрузку только от вашего телефона, нужно запрограммировать его звонок на ваш номер на определенную мелодию. когда вы позвоните на телефон щитка, телефон щитка проиграет определенную мелодию, которую расшифрует микроконтроллер. Роль детектора мелодий выполняет микрофон. Затем сигнал с микрофона поступает на вход детектора и дальше в контроллер. Чтобы обойтись без микрофонного усилителя и повысить помехоустойчивость, микрофон нужно приложить к динамику телефона непосредственно.

    Естественно, микроконтроллер сначало надо запрограммировать.

    Прошивка для контроллера находится здесь:

    Прошивка настроена на прием трех импульсов на выключение и прием пяти импульсов на включение. Интервал между импульсами -- 265 мс.

    Внешний вид устройства может быть таким:

    С наступлением дачного сезона становится актуальным энергообеспечение дачных домов, там где нет централизованного подвода электроэнергии.

    Один из альтернативных источников энергообеспечения служит солнечная батарея. Однако стоимость ее довольно высока, поэтому встает вопрос о более эффективном ее использовании. Наибольшая отдача батареи происходит при перпендикулярном ее ориентировании на солнце. Однако солнце не стоит на месте, оно перемещается с востока на запад. В данной статье описано устройство, автоматически ориентирующее батарею строго на солнце.

    Идея упростить конструкцию системы ориентации солнечных батарей состоит в том, чтобы использовать готовый блок ориентации спутниковой антэнны, так называемый мотоподвес. Пользователю остается лишь прикрепить блок солнечных батарей к мотоподвесу, и по уровню сигнала, снимаемого с датчиков солнечной батареи, блок электроники сориентирует антенну точно на солнце.

    Мотоподвес предназначен для отслеживания спутников, находящихся на геостационарной орбите (т. е. при повороте он не только вращает батарею, но и наклоняет ее, в результате чего батарея будет ориентирована точно на солнце. Сигнал для поворота формируется двумя фотодиодами, расположенными на солнечной батарее и ориентированными на дугу с углом между собой в 30 градусов. Питание схемы в начальный момент необходимо из резервного источника питания(аккумулятора). Рассмотрим детально процесс ориентирования.

    Допустим батарея находится в промежуточном положении между западом и востоком. С восходом солнца на востоке левый фотодиод освещается сильнее правого, в результате чего на IN1 формируется логическая единица и батарея поворачивается на восток до освещения 2-го фотодиода и появления единицы на IN2, после чего мотор мотоподвеса останавливается. Затем, по мере продвижения солнца на запад правый фотодиод освещается сильнее, что приводит к появлению единицы уже на IN2 и мотор включается в другом направлении. Батарея как бы догоняет солнце. Переменные резисторы служат для подстройки чувствительности системы ориентации. Резистор R1 служит для ограничения тока коллектора мотора во время пуска. Конденсатор С3--керамический, служит для фильтрации помех искрения щеток.

    Здесь рассказано, как предельно просто, не вдаваясь в сложности,используя минимум комплектующих, установить охранную или охранно-пожарную сигнализацию дома или коттеджа.

    В настоящее время существует великое множество охранных систем. Большую часть из них

    составляют электронные охранные системы, которые в свою очередь делятся на цифровые и аналоговые охранные системы и т.д. и т.п..

    При этом оборудование постоянно усложняется, становится дороже.

    От всего этого свободно это устройство.

    Описание работы схемы:

    При нарушении цепи охраны (в следствии проникновения) выключается реле P1, вследствии чего включается сигнальное устройство.

    Используемые детали:

    реле P1--любое реле с напряжением срабатывания 12 Вольт и током моммутирования 1А.Нам потребуется та пара контактов, которая срабатывает при отпускании реле. Сигнальное устройство--любое типа "Маяк" или от сигнализации автомобиля. Геркон--любой, выдерживающий ток 100 мА и напряжение 12 Вольт.

    По конструктиву:

    Герконами защищаем места, где наиболее вероятно проникновение (двери, окна, калитка, забор). Провод для периметра, сигнальное устройство и провода подвода питания необходимо замаскировать. Количество герконов не стоит превышать 10, иначе тяжее будет найти повреждение (как в елочной гирлянде).

    Зачем это нужно: если открыть сайт lyngsat.com можно увидеть, насколько большое и разнообразное количество отечественных и зарубежных программ в отличном качестве передают спутники. Однако ручная перенастройка соспутника на спутник очень трудоемкое занятие и занимает много времени, а иногда и просто невозможно, если антена стоит в труднодоступном месте. Для этого и служит мотоподвес, в состав которого обычно входит мотор, механизм поворота, датчики крайнего положения и энкодер.

    Для того чтобы управлять поворотом спутниковой антены, нужен мотоподвес с энкодером. Тогда подавая питание на мотоподвес и подсчитывая количество импульсов с энкодера вседа можно знать положение антены. Обычно подсчет импульсов ведется относительно некоторой точки, которую нужно определить заранее с помощью датчика крайнего положения. Назовем эту точку HOME, что по английски значит "дом". Далее определяем, сколько импульсов на градус делает наш энкодер. Это можно сделать, прочитав документацию мотоподвеса или рассчитав значение опытным путем. Далее выставляем антену в крайнее положение и подсчитывая количество импульсов выставляем ее на нужный спутник. Можно предварительно найдя какой-нибудь спутник, настраиваться относительно него. Например Eutelsat W4 at 36.0°E в Московской области находится строго на юге и вы на него настроены, количество импульсов енкодера--5 на градус. А Express AM1 at 40.0°E расположен на 4 градуса западнее(левее,если смотреть на юг.) То есть количество импульсов при повороте на Express AM1 at 40.0°E = 4*5=20. Включаем мотор и через 20 импульсов при правильной настройке мотоподвеса попадаем на Express AM1 at 40.0°E.

    В данной конструкции подсчет импульсов, формирование включения моторов, запоминание позиции выполняет компъютер, а обмен сигналами выполняется через паралельный порт.

    Управление мотоподвесом осуществляется с компьютера через паралельный порт. Программа написана на Делфи.

    Для работы программы надо установить файл test.txt на диск С для записи параметров программы. Для работы так же требуется драйвер LPT, который должен находиться в той же дирректории, что и программа.

    Этот механизм поможет уложить спать ребенка. Устройство состоит из актуатора, генератора, усилителя, блока питания и конечно самой кровати.

    Принципиальная схема устройства показана на рисунке:

    Микросхема L298 - мостовой драйвер. При появлении на входе IN1 логической единицы, а на IN2 логического нуля актуатор двжется в одну сторону, при противоположной раскладке - в другую. По входу ENA осуществляется управление скоростью актуатора.

    Управление L298 осуществляется микроконтроллером ATmega16. Прошивка для него находится здесь.

    Порядок работы следующий: при возникновении сигнала от микрофона (ребенок проснулся и закричал) включается актуатор, выполняет 20 качаний. Если после этого сигнал от микрофона продолжает идти, качание продолжается.

    Регулировка скорости и частоты качаний регулируется с помощью резисторов R1, R2. Микрфон располагается в непосредственной близости от ребенка. Питание качалки осуществляется от любого стабилизированного источника на 12 В и ток 4 А.