Измерение емкости и индуктивности. Измерение индуктивностей низкочастотных катушек

  • Дата: 23.12.2021

Подавляющее большинство любительских измерителей индуктивности на контроллерах измеряет частоту генератора работающего на частотах около 100кГц, и хотя они якобы имеют разрешение 0.01мкГн, но на деле при индуктивностях 0.5 и ниже представляют из себя хороший генератор случайных чисел, а не прибор.У разработчика радиочастотных устройств есть три пути:

  1. обломаться

  2. купить промышленный измеритель импеданса и некоторое время поголодать

  3. сделать что-то более высокочастотное и широкополосное.

Наличие множества онлайн калькуляторов кардинально упрощают задачу, можно обойтись одним лишь генератором, подключаемым к частотомеру, не сильно потеряв в удобстве, зато выиграв в функционале.

Приставка может измерять индуктивности от 0,05мкГн. Выходное напряжение около 0.5В. Собственная индуктивность выводов 0,04мкГн. Диапазон выходных частот: хз...77МГц.

Широкополосный генератор выполнен по известной двухточечной схеме и мало чувствителен к добротности частотозадающего контура.

Для измерения наименьших индуктивностей емкость выбрана 82пф, вместе с входной ёмкостью расчётная(для калькулятора) получается около 100пф(круглые числа более удобны), а макс. частота генерации около 80МГц. С контура напряжение подаётся на повторитель vt2 а с него на эмиттер vt1, таким образом реализована ПОС. Применяемая иногда непосредственная связь затвора с контуром приводит к неустойчивой работе генератора на частотах 20-30Мгц, потому применён разделительный конденсатор с1. Полевой транзистор должен иметь начальный ток стока не менее 5мА, иначе транзистор нужно приоткрыть сопротивлением несколько сотен кОм с плюса на затвор. Лучше применить транзистор в высокой крутизной, это увеличит выходное напряжение снимаемое с истока. Хотя сам по себе генератор практически не чувствителен к типам транзисторов.

Для расчёта применяются онлайн калькуляторы
наиболее удобный
наиболее неудобный
гламурный, но с характером

Задающая ёмкость в приборе может быть любой, даже китайская глина. Лучше иметь эталонные катушки, а измеренную ёмкость уже подставлять в калькулятор, хотя на деле это и не обязательно.

Фольга с обратной стороны используется в качестве экрана.
Выводы на катушку выполняются в виде гибких плоских поводков из оплётки длиной 2см. с крокодилами.


http://edisk.ukr.net/get/377203737/%D0%B8%D0%BD%D0%B4.lay6

Особенности использования.


Для питания лучше предусмотреть соответствующую клемму на частотомере.

Выводы на катушку должны быть максимально прямыми если измеряются сверхмалые индуктивности. От результата нужно отнять собственную индуктивность выводов 0.04мкГн. Минимально измеряемая индуктивность примерно такая же.

Для измерения индуктивностей до 100мкГн годится штатная ёмкость, выше лучше использовть дополнительные ёмкости от 1н, иначе будет погрешность от межвитковой ёмкости катушки.

Для измерения межвитковой ёмкости нужно измерить истинное значение индуктивности с С 10-100н, потом измеряется частота с штатной ёмкостью(100пф), вносится в калькулятор, далее считается суммарная емкость, от которой нужно отнять 100пф.
Пример. аксиальный дроссель 3.8 мГн, со штатной ёмкостью частота 228 кГц, суммарная ёмкость 128пф, межвитковая 28.
Таким же образом вычисляются ёмкости в контурах.

Для измерений дросселей на низкочастотных магнитопроводах НН они должны иметь достаточно большое количество витков, например на кольцах 2000НН не менее 20, иначе частота может быть выше рабочей для них(до 400кГц), и генерация будет в лучшем случае срываться, а в худшем импульсная, как в блокинг генераторе, с частотой в килогерцы. Для маловитковых нужна дополнительная ёмкость.

Содержимое:

"Индуктивность" означает либо взаимную индукцию, когда напряжение в электрической цепи возникает в результате изменения силы тока в другой цепи, либо самоиндукцию, при которой напряжение в цепи создается в результате изменения тока в этой же цепи. В обоих случаях индуктивность определяется отношением напряжения к силе тока, а единицей ее измерения является генри, равный 1 вольт в секунду, поделенный на ампер. Поскольку генри является большой величиной, индуктивность обычно измеряют в миллигенри (мГн, тысячная часть генри) или в микрогенри (мкГн, миллионная часть генри). Ниже описаны несколько методов измерения индуктивности катушки.

Шаги

1 Измерение индуктивности по зависимости напряжение-ток

  1. 1 Подключите к катушке индуктивности источник импульсного напряжения. При этом полный импульс должен составлять не более 50 процентов.
  2. 2 Включите монитор на регистрацию тока. Необходимо подключить в цепь токочувствительный резистор, или же использовать амперметр. И первый и второй следует соединить с осциллографом.
  3. 3 Зафиксируйте максимальное значение тока и время между двумя импульсами напряжения в сети. Сила тока измеряется в амперах, время - в микросекундах.
  4. 4 Умножьте напряжение, прикладываемое к цепи за один импульс, на длительность импульса. Например, если напряжение 50 вольт сообщается цепи в течение 5 микросекунд, в результате получим 50, умноженные на 5, т.е. 250 вольт в микросекунду.
  5. 5 Поделите произведение напряжения и длительности импульса на максимальную силу тока. Продолжая приведенный выше пример, если максимальный ток составил 5 ампер, индуктивность будет равна 250 вольт в секунду, поделенным на 5 ампер, или же 50 микрогенри.
    • Несмотря на простоту расчетов, этот метод измерения индуктивности требует более сложного оборудования по сравнению с остальными.

2 Измерение индуктивности с помощью сопротивления

  1. 1 Подключите последовательно к катушке индуктивности резистор, сопротивление которого известно. Величина сопротивления должна быть известна с точностью не ниже одного процента. При последовательном соединении электрический ток проходит как через катушку, так и через сопротивление; катушка и резистор должны иметь электрический контакт лишь в одной точке.
  2. 2 Пропустите ток через получившуюся цепь. Это делается с помощью функционального преобразователя, моделирующего реальные токи через катушку и резистор.
  3. 3 Зафиксируйте значения напряжения на входе и в месте соединения катушки с сопротивлением. Отрегулируйте ток так, чтобы напряжение в месте соединения составило половину входного напряжения цепи.
  4. 4 Определите частоту тока. Частота измеряется в килогерцах.
  5. 5 Вычислите индуктивность. В отличие от предыдущего метода, настоящий способ требует меньше оборудования, но более сложные вычисления. Индуктивность рассчитывается следующим образом:
    • Умножьте сопротивление резистора на корень квадратный из 3. К примеру, если резистор имеет сопротивление 100 ом, умножение на 1,73 (корень квадратный из 3 с точностью до второго знака после запятой) даст вам 173.
    • Поделите результат произведения на на частоту, умноженную на 2 и число пи. Если частота равна 20 килогерц, делить надо на 125,6; 173, поделенное на 125,6 даст вам, с точностью до второго знака после запятой, 1,38 миллигенри.
    • мГн = (R x 1,73) / (6,28 x (Гц / 1000))
    • Например: дано R = 100 и Гц = 20.000
    • мГн = (100 X 1,73) / (6,28 x (20.000 / 1000)
    • мГн = 173 / (6,28 x 20)
    • мГн = 173 / 125,6
    • мГн = 1,38

3 Измерение индуктивности с помощью конденсатора и сопротивления

  1. 1 Подключите катушку индуктивности параллельно с конденсатором, емкость которого известна. Параллельное подключение катушки и конденсатора приводит к созданию электрического колебательного контура. Используйте конденсатор, емкость которого известна с точностью не ниже 10 процентов.
  2. 2 Подключите получившийся контур последовательно к сопротивлению.
  3. 3 Пропустите через цепь ток. Это, как и в предыдущем случае, делается при помощи функционального преобразователя.
  4. 4 Подсоедините клеммы осциллографа к полученной цепи. После этого измените силу тока от минимальных до максимальных значений.
  5. 5 Найдите на осциллографе точку резонанса. В этой точке ток максимален.
  6. 6 Поделите 1 на произведение квадрата энергии на выходе и емкости конденсатора. Энергия 2 джоуля и емкость 1 фарад дадут в знаменателе 2 в квадрате, т.е. 4; 1, поделенное на 4 равно 0,25 генри, или 250 миллигенри.
  • При последовательном соединении индукторов их общая индуктивность равна сумме индуктивностей каждого из индукторов. Если же они соединены параллельно, обратная общая индуктивность (т.е. 1 поделить на L) равна сумме обратных индуктивностей.
  • Индукторы могут представлять собой проволочные катушки, кольцевые сердечники, или быть сделаны из тонкой фольги. Чем больше витков имеет катушка на единицу длины, тем выше ее суммарное поперечное сечение и, соответственно, индуктивность. Индуктивность длинных катушек ниже индуктивности более коротких.

Предупреждения

  • Индуктивность можно определить непосредственно с помощью измерителя индуктивности, но такие приборы не очень распространены, и большинство из них предназначены для измерения слабых токов.

Что вам понадобится

  • Функциональный преобразователь
  • Осциллограф с клеммами
  • Резистор или конденсатор

Основным параметром, характеризующим контурные катушки, дроссели, обмотки трансформаторов является индуктивность L. В высокочастотных цепях применяются катушки с индуктивностью от сотых долей микрогенри до десятков миллигенри; катушки, используемые в низкочастотных цепях, имеют индуктивность до сотен и тысяч генри. Измерение индуктивности высокочастотных катушек, входящих в состав колебательных систем, желательно производить с погрешностью не более 5%; в большинстве других случаев допустима погрешность измерения до 10-20%.

Рис. 1. Эквивалентные схемы катушки индуктивности.

Каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью C L и активным сопротивлением потерь R L , распределёнными по её длине. Условно считают, что L, C L и R L сосредоточены и образуют замкнутую колебательную цепь (рис. 1, а) с собственной резонансной частотой

f L = 1/(LC L) 0,5

Вследствие влияния ёмкости C L при измерении на высокой частоте f определяется не истинная индуктивность L, а действующее, или динамическое, значение индуктивности

L д = L/(1-(2*π*f) 2 *LC L) = L/(1-f 2 / f L 2)

которое может заметно отличаться от индуктивности L, измеренной на низких частотах.

С повышением частоты возрастают потери в катушках индуктивности, обусловленные поверхностным эффектом, излучением энергии, токами смещения в изоляции обмотки и каркасе, вихревыми токами в сердечнике. Поэтому действующее активное сопротивление R д катушки может заметно превышать её сопротивление R L , измеренное омметром или мостом постоянного тока. От частоты f зависит и добротность катушки:

Q L = 2*π*f*L д /R д.

На рис. 1, б, представлена эквивалентная схема катушки индуктивности с учётом её действующих параметров. Так как значения всех параметров зависят от частоты, то испытание катушек, особенно высокочастотных, желательно проводить при частоте колебаний источника питания, соответствующей их рабочему режиму. При определении результатов испытания индекс «д» обычно опускают.

Для измерения параметров катушек индуктивности применяются в основном методы вольтметра - амперметра, мостовой и резонансный. Перед измерениями катушка индуктивности должна быть проверена на отсутствие в ней обрыва и короткозамкнутых витков. Обрыв легко обнаруживается с помощью любого омметра или пробника, тогда как выявление коротких замыканий требует проведения специального испытания.

Для простейших испытаний катушек индуктивности иногда используют электронно-лучевые осциллографы.

Индикация короткозамкнутых витков

Проверка на отсутствие короткого замыкания чаще всего производится помещением испытуемой катушки вблизи другой катушки, входящей в состав колебательного контура автогенератора, наличие колебаний в котором и их уровень контролируются с помощью телефонов, стрелочного, электронно-светового или иного индикатора. Катушка с короткозамкнутыми витками будет вносить в связанную с нею цепь активные потери и реактивное сопротивление, уменьшающие добротность и действующую индуктивность цепи; в результате произойдёт ослабление колебаний автогенератора или даже их срыв.

Рис. 2. Схема резонансного измерителя ёмкостей, использующего явление поглощения.

Чувствительным прибором подобного типа может служить, например, генератор, выполненный по схеме на рис. 2. Катушка с короткозамкнутыми витками, поднесённая к контурной катушке L1, будет вызывать заметное возрастание показаний микроамперметра μA.

Испытательная цепь может представлять собой настроенный на частоту источника питания последовательный контур (см. «Радио», 72-5-54); напряжение на элементах этого контура, контролируемое каким-либо индикатором, под влиянием короткозамкнутых витков проверяемой катушки будет уменьшаться вследствие расстройки и возрастания потерь. Возможно также использование уравновешенного моста переменного тока, одним из плеч которого в этом случае должна являться катушка связи (вместо катушки L x); короткозамкнутые витки испытуемых катушек будут вызывать нарушение равновесия моста.

Чувствительность испытательного прибора зависит от степени связи между катушкой измерительной цепи и проверяемой катушкой, с целью её повышения желательно обе катушки насаживать на общий сердечник, который в этом случае выполняется разомкнутым.

При отсутствии специальных приборов для проверки высокочастотных катушек можно использовать радиоприёмник. Последний настраивают на какую-либо хорошо слышимую станцию, после чего вблизи одной из его действующих контурных катушек, например магнитной антенны (желательно на одной оси с нею), помещают проверяемую катушку. При наличии короткозамкнутых витков громкость заметно уменьшится. Уменьшение громкости может иметь место и в том случае, если частота настройки приёмника окажется близкой к собственной частоте испытуемой катушки. Поэтому во избежание ошибки испытание следует повторить при настройке приёмника на другую станцию, достаточно удалённую от первой по частоте.

Измерение индуктивностей методом вольтметра - амперметра

Метод вольтметра - амперметра применяется для измерения сравнительно больших индуктивностей при питании измерительной схемы от источника низкой частоты F = 50...1000 Гц.

Схема измерений представлена на рис. 3, а . Полное сопротивление Z катушки индуктивности рассчитывается по формуле

Z = (R2+X2) 0,5 = U/I

на основе показаний приборов переменного тока V ~ и mA ~ . Верхний (по схеме) вывод вольтметра присоединяют к точке а при Z << Z в и к точке б при Z >> Z a , где Z в и Z a - полные входные сопротивления соответственно вольтметра V ~ и миллиамперметра mA ~ . Если потери малы, т. е. R << X = 2*π*F*L x , то измеряемая индуктивность определяется формулой

L x ≈ U/(2*π*F*I).

Катушки большой индуктивности с целью уменьшения их габаритов обычно изготовляются со стальными сердечниками. Наличие последних приводит к нелинейной зависимости магнитного потока от тока, протекающего через катушку. Эта зависимость становится особенно сложной для катушек, работающих с подмагничиванием, через обмотки которых протекают одновременно переменный и постоянный токи. Поэтому индуктивность катушек со стальными сердечниками зависит от значения и характера протекающего через них тока. Например, при большой постоянной составляющей тока происходит магнитное насыщение сердечника и индуктивность катушки резко уменьшается. Кроме того, проницаемость сердечника и индуктивность катушки зависят от частоты переменного тока. Отсюда следует, что измерение индуктивности катушек со стальными сердечниками необходимо проводить в условиях, близких к их рабочему режиму. В схеме на рис. 3, а это обеспечивается при дополнении её цепью постоянного тока, показанной штриховой линией. Необходимый ток подмагничивания устанавливается реостатом R2 по показаниям миллиамперметра постоянного тока mA . Разделительный конденсатор С и дроссель Др разделяют цепи питания постоянного и переменного тока, устраняя взаимное влияние между ними. Приборы переменного тока, применяемые в данной схеме, не должны реагировать на постоянные составляющие измеряемого ими тока или напряжения; для вольтметра V ~ это легко обеспечивается посредством включения последовательно с ним конденсатора ёмкостью в несколько микрофарад.

Рис. 3. Схемы измерения индуктивности методом вольтметра - амперметра.

Другой вариант измерительной схемы, позволяющий обойтись без миллиамперметра переменного тока, приведён на рис. 3, б . В этой схеме реостатами R1 и R2 (их можно заменить потенциометрами, включёнными параллельно источникам питания) устанавливают требуемый режим испытания по переменному и постоянному току. В положении 1 переключателя В вольтметр V ~ измеряет переменное напряжение U 1 на катушке L x . При переводе переключателя в положение 2 фактически контролируется значение переменного тока в цепи по падению напряжения U 2 на опорном резисторе R о. Если потери в катушке малы, т. е. R << 2*π*F*L x , то измеряемую индуктивность можно рассчитать по формуле

L x ≈ U1*R о /(2*π*F*U 2).

Мостовой метод измерения параметров катушек индуктивности. Универсальные измерительные мосты

Мосты, предназначенные для измерения параметров катушек индуктивности, формируются из двух плеч активного сопротивления, плеча с объектом измерений, сопротивление которого в общем случае является комплексным, и плеча с реактивным элементом - конденсатором или катушкой индуктивности.

Рис. 4. Схема магазинного моста для измерения индуктивностей и сопротивлений потерь.

В измерительных мостах магазинного типа в качестве реактивных элементов предпочитают использовать конденсаторы, поскольку в последних потери энергии могут быть сделаны пренебрежимо малыми, а это способствует более точному определению параметров исследуемых катушек. Схема такого моста представлена на рис. 4. Регулируемым элементом здесь является конденсатор С2 переменной ёмкости (или магазин ёмкостей), зашунтированный переменным резистором R2; последний служит для уравновешивания фазового сдвига, создаваемого сопротивлением потерь R x в катушке с индуктивностью L x . Применяя условие равновесия амплитуд (Z 4 Z 2 = Z 1 Z 3), находим:

(R x 2 + (2*&pi*F*L x) 2) 0,5: ((1/R 2) 2 + (2*&pi*F*C 2) 2) 0,5 = R 1 R 3 .

Так как фазовые углы φ1 = φ3 = 0, то условие равновесия фаз (φ4 +φ2 =φ1 + φ3) можно записать в виде равенства φ4 + φ2 = 0, или φ4 = -φ2, или tg φ4 = -tg φ2. Учитывая, что для плеча с L x справедлива формула (tg φ =X/R), а для плеча с ёмкостью С 2 - формула (tg φ =R/X) при отрицательном значении угла φ2, имеем

2*&pi*F*L x / R x = 2*&pi*F*C 2 R 2

Решая совместно приведённые выше уравнения, получим:

L x = C 2 R 1 R 3 ; (1)
R x = R 1 R 3 / R 2 . (2)

Из последних формул следует, что конденсатор С2 и резистор R2 могут иметь шкалы для непосредственной оценки значений L x и R x , причём регулировки амплитуд и фаз, производимые ими, взаимонезависимы, что позволяет быстро уравновешивать мост.

Для расширения диапазона измеряемых величин один из резисторов R1 или R3 обычно выполняется в виде магазина сопротивлений.

При необходимости измерения параметров катушек со стальными сердечниками схема моста на рис. 4 дополняется источником постоянного напряжения U о, реостатом R о и миллиамперметром постоянного тока mA , служащими для регулировки и контроля тока подмагничивания, а также дросселем Др и конденсатором С, разделяющими цепи переменной и постоянной составляющих тока.

Рис. 5. Схема магазинного моста для измерения индуктивностей и добротностей

На рис. 5 приведена схема другого варианта магазинного моста, в которой конденсатор С2 имеет постоянную ёмкость, а резисторы R1 и R2 взяты переменными. Расширение диапазона измерений осуществляется посредством включения в мост резисторов R3 различных номиналов. Из формул (1) и (2) следует, что регулировки амплитуд и фаз в этой схеме оказываются взаимозависимыми, поэтому уравновешивание моста достигается путём попеременного изменения сопротивлений резисторов R1 и R2. Оценка индуктивностей L x производится по шкале резистора R1 с учётом множителя, определяемого установкой переключателя В . Отсчёт по шкале резистора R2 обычно производится в значениях добротности катушек

Q L = 2*π*F*L x /R x = 2*π*F*C 2 R 2 .

при частоте F источника питания. В справедливости последней формулы можно убедиться, если левую и правую части равенства (1) разделить на соответствующие части равенства (2).

При указанных на схеме данных измерительный мост позволяет измерять индуктивности примерно от 20 мкГн до 1, 10, 100 мГн; 1 и 10 Гн (без стальных сердечников) и добротности до значения Q L ≈ 60. Источником питания служит транзисторный генератор с частотой колебаний F ≈ 1 кГц. Напряжение разбаланса усиливается транзисторным усилителем, нагруженным на телефоны Тф. Двойной Т-образный RC-фильтр, настроенный на частоту 2F ≈ 2 кГц, подавляет вторую гармонику колебаний источника, что облегчает уравновешивание моста и снижает погрешность измерений.

Мостовые измерители индуктивностей, ёмкостей и активных сопротивлений имеют ряд идентичных элементов. Поэтому они часто совмещаются в одном приборе - универсальном измерительном мосте. Универсальные мосты высокой точности базируются на магазинных схемах типа приведённых на рис. 5. Они содержат источник постоянного напряжения или выпрямитель (питающий схему измерения R x), генератор низкой частоты с выходной мощностью в несколько ватт, многокаскадный усилитель напряжения разбаланса, нагруженный на магнитоэлектрический гальванометр; последний при измерении активных сопротивлений включается непосредственно в измерительную диагональ моста. Требуемая схема измерений формируется с помощью довольно сложной системы коммутации. В таких мостах иногда применяют индикаторы логарифмического типа, чувствительность которых резко падает, если мост не уравновешен.

Рис. 6. Схема универсального реохордного моста для измерения сопротивлений, ёмкостей и индуктивностей

Значительно проще универсальные мосты реохордного типа, измеряющие параметры радиодеталей с погрешностью порядка 5-15%. Возможная схема такого моста представлена на рис. 6. Мост питается при всех видах измерений напряжением с частотой примерно 1 кГц, которое возбуждается транзисторным генератором, выполненным по схеме индуктивной трёхточки. Индикатором баланса служит высокоомный телефон Тф. Резисторы R2 и R3 заменены проволочным реохордом (или, чаще, обычным потенциометром), позволяющим уравновешивать мост плавным изменением отношения сопротивлений R2/R3. Это отношение отсчитывается по шкале реохорда, диапазон показаний которой обычно ограничивается крайними значениями 0,1 и 10. Измеряемая величина определяется при уравновешенном мосте как произведение отсчёта по шкале реохорда на множитель, определяемый установкой переключателя В. Каждому виду и пределу измерений отвечает включение в схему моста соответствующего опорного элемента требуемого номинала - конденсатора С о (С1), резистора R о (R4) или катушки индуктивности L о (L4).

Особенностью рассматриваемой схемы является то, что измеряемые элементы R x и L x включаются в первое плечо моста (при опорных элементах R о и L о, находящихся в четвёртом плече), а С х, наоборот, - в четвёртое плечо (при С о - в первом плече). Благодаря этому оценка всех измеряемых величин производится по аналогичным формулам типа

A X = A о (R2/R3),

где А х и А о - значения величин соответствующих измеряемого и опорного элементов.

Переменный резистор R5 служит для компенсации фазовых сдвигов и улучшения балансировки моста при измерении индуктивностей. С той же целью иногда включают переменный резистор небольшого сопротивления в цепь опорного конденсатора С о предела измерений больших ёмкостей, которые часто имеют заметные потери.

С целью исключения влияния руки оператора движок реохорда обычно соединяют с корпусом прибора.

Резонансные измерители индуктивностей

Резонансные методы позволяют измерять параметры высокочастотных катушек индуктивности в диапазоне их рабочих частот. Схемы и способы измерений аналогичны применяемым при резонансных измерениях ёмкостей конденсаторов с учётом, конечно, специфики объектов измерений.

Рис. 7. Резонансная схема измерения индуктивностей с отсчётом по шкале генератора

Исследуемая катушка индуктивности может включаться в высокочастотный генератор как элемент его колебательного контура; В этом случае индуктивность L x определяется на основе показаний частотомера, измеряющего частоту колебаний генератора.

Чаще катушку L x подключают к измерительному контуру, связанному с источником высокочастотных колебаний, например генератором (рис. 2) или входной цепью радиоприёмника, настроенного на частоту радиовещательной станции (рис. 8). Предположим, что измерительный контур состоит из катушки связи L с подстроечным сердечником и конденсатора переменной ёмкости С о.

Рис. 8. Схема измерения ёмкостей резонансным методом с помощью радиоприёмника

Тогда применима следующая методика измерений. Измерительный контур при максимальной ёмкости С о1 конденсатора С о регулировкой индуктивности L настраивают в резонанс с известной частотой f источника колебаний. Затем в контур последовательно с его элементами включают катушку L x , после чего резонанс восстанавливают уменьшением ёмкости Со до некоторого значения С о2 . Измеряемую индуктивность рассчитывают по формуле

L х = * (С о1 -С о2)/(С о1 С о2).

В широкодиапазонных резонансных измерителях измерительный контур составляется из опорного конденсатора С о и исследуемой катушки L x . Контур связывают индуктивно, а чаще через конденсатор С 1 небольшой ёмкости (рис. 7 и 9) с высокочастотным генератором. Если известна частота колебаний генератора f 0 , соответствующая резонансной настройке контура, то измеряемая индуктивность определяется формулой

L х = 1/[(2*π*f о) 2 *C о ]. (3)

Возможны два варианта построения измерительных схем. В схемах первого варианта (рис. 7) конденсатор С о берётся постоянной ёмкости, а резонанс достигается изменением настройки генератора, работающего в плавном диапазоне частот. Каждому значению L x отвечает определённая резонансная частота

f 0 = 1/(2*π*(L x C x) 0,5), (4)

поэтому контурный конденсатор генератора можно снабдить шкалой с отсчётом в значениях L x . При широком диапазоне измеряемых индуктивностей генератор должен иметь несколько частотных поддиапазонов с отдельными шкалами для оценки L x на каждом поддиапазоне. Если в приборе используется генератор, имеющий шкалу частот, то для определения L x по значениям f 0 и С о можно составить таблицы или графики.

Для исключения влияния собственной ёмкости C L катушки на результаты измерений ёмкость С о должна быть большой; с другой стороны, ёмкость С о желательно иметь малой, чтобы обеспечить при измерении малых индуктивностей достаточно большое отношение L x /C о, необходимое для получения заметных показаний индикатора при резонансе. Практически берут С о = 500...1000 пФ.

Если высокочастотный генератор работает в ограниченном диапазоне частот, не разбитом на поддиапазоны, то для расширения пределов измерения индуктивностей применяют несколько переключаемых конденсаторов С о; если их ёмкости различаются в 10 раз, то на всех пределах оценка L x может производиться по одной и той же шкале генератора с использованием множителей к ней, кратных 10. Однако такая схема имеет существенные недостатки.

Измерение относительно больших индуктивностей, имеющих значительную собственную ёмкость C L , происходит на пределе с малой ёмкостью С о, и, наоборот, измерение малых индуктивностей производится на пределе с большой ёмкостью С о при невыгодном отношении L x /C о и малом резонансном напряжении на контуре.

Рис. 9. Резонансная схема измерения индуктивностей с отсчётом по шкале опорного конденсатора

В резонансных измерителях, схемы которых выполнены по второму варианту (рис. 9), индуктивности измеряются при фиксированной частоте генератора f 0 . Измерительный контур настраивают в резонанс с частотой генератора с помощью конденсатора переменной ёмкости С о, отсчёт по шкале которого в соответствии с формулой (3) может производиться непосредственно в значениях L x . Если обозначить через С м и С н соответственно максимальную и начальную ёмкости контура, а через L м и L н - максимальное и наименьшее значения измеряемых индуктивностей, то пределы измерения прибора будут ограничиваться отношением

L м /L н = С м /С н.

Типовые конденсаторы переменной ёмкости имеют перекрытие по ёмкости, равное примерно 30. С целью уменьшения погрешности при измерении больших индуктивностей начальную ёмкость С н контура увеличивают посредством включения в контур дополнительного конденсатора С д, обычно подстроечного типа.

Если обозначить через ΔС о наибольшее изменение ёмкости конденсатора С о, равное разности его ёмкостей при двух крайних положениях ротора, то для получения выбранного отношения L м /L н контур должен иметь начальную ёмкость

C н = ΔC о: (L м /L н -1). (5)

Например, при ΔС о = 480 пФ и отношении L м /L н = 11 получаем С н = 48 пФ. Если значения С н и L м /L н при расчёте являются исходными данными, то необходимо применить конденсатор С о, имеющий разность ёмкостей

ΔC о ≥ C н (L м /L н -1).

При больших значениях С н и L м /L н может потребоваться применение сдвоенного или строенного блока конденсаторов переменной ёмкости.

Частота f 0 , на которой должен работать генератор, определяется формулой (4) при подстановке в неё значений L м и С н или L н и С м. Для расширения общего диапазона измерений предусматривают работу генератора на нескольких переключаемых фиксированных частотах. Если соседние частоты генератора различаются в 10 0,5 ≈ 3,16 раза, то на всех пределах можно использовать общую шкалу индуктивностей конденсатора С о с множителями к ней, кратными 10 и определяемыми установкой переключателя частот (рис. 9). Плавное перекрытие всего диапазона измеряемых индуктивностей обеспечивается при отношении ёмкостей контура C м /C н ≥ 10. Если конденсатор С о логарифмического типа, то шкала индуктивностей близка к линейной.

Вместо генератора фиксированных частот можно применить измерительный генератор с плавным изменением частоты, которую устанавливают в зависимости от требуемого предела измерения индуктивностей.

Резонансные схемы измерения индуктивностей и ёмкостей часто совмещаются в одном приборе, поскольку они имеют ряд идентичных элементов и сходную методику измерений.

Пример . Рассчитать резонансный измеритель индуктивностей, работающий по схеме на рис. 9, на диапазон измерений 0,1 мкГн - 10 мГн при использовании сдвоенного блока переменных конденсаторов, ёмкость секций которого можно изменять от 15 до 415 пФ.

Решение
1. Наибольшее изменение ёмкости контура ΔС о = 2*(415-15) = 800 пФ.

2. Выбираем отношение L м /L н = 11. Тогда прибор будет иметь пять пределов измерений: 0,1-1,1; 1-11; 10-110; 100-1100мкГ и 1-11 мГн.

3. Согласно (5) контур должен иметь начальную ёмкость С н = 800/10 = 80 пФ. Учитывая начальную ёмкость блока конденсаторов, равную 30 пФ, включаем в контур подстроечный конденсатор С д с максимальной ёмкостью 50...80 пФ.

4. Максимальная ёмкость контура С м = С н + ΔС о = 880 пФ.

5. Согласно (4) на первом пределе измерений генератор должен работать на частоте
f 01 = 1/(2*π*(L н C м) 0,5) ≈ 0,16*(0,1*10^-6*880*10^-12) ≈ 17 МГц.
Для других пределов измерений находим соответственно: f 02 = 5,36 МГц; f 03 = 1,7 МГц; f 04 = 536 кГц; f 05 = 170 кГц.

6. Шкалу индуктивностей выполняем для предела измерений 1-11 мкГн.

Измерители добротности (куметры)

Приборы, предназначенные для измерения добротности элементов высокочастотных цепей, часто называют куметрами. Действие куметров основано на использовании резонансных явлений, что позволяет измерение добротности сочетать с измерением индуктивности, ёмкости, собственной резонансной частоты и ряда других параметров испытуемых элементов.

Куметр, упрощённая схема которого приведена на рис. 10, содержит три основных компонента: генератор высокой частоты, измерительный контур и индикатор резонанса. Генератор работает в широком, плавно перекрываемом диапазоне частот, например от 50 кГц до 50 МГц; это позволяет многие измерения проводить на рабочей частоте испытуемых элементов.

Исследуемая катушка индуктивности L x , R x через зажимы 1 и 2 включается в измерительный контур последовательно с опорным конденсатором переменной ёмкости С о и конденсатором связи С 2 ; ёмкость последнего должна удовлетворять условию: С 2 >> С о.м, где С о.м - максимальная ёмкость конденсатора С о. Через ёмкостный делитель C 1 , С 2 с большим коэффициентом деления

N = (C 2 + C 1)/C 1

в контур вводится от генератора опорное напряжение U о требуемой высокой частоты f. Возникающий в контуре ток создаёт падение напряжения U С на конденсаторе С о, которое измеряется высокочастотным вольтметром V2.

Входное сопротивление вольтметра V2 в пределах рабочих частот куметра должно быть очень велико. При достаточно высокой чувствительности вольтметр подключают к измерительному контуру через ёмкостный делитель напряжения, входную ёмкость которого учитывают как компонент начальной ёмкости конденсатора С о. Поскольку все конденсаторы, входящие в состав измерительного контура, имеют весьма малые потери, то можно считать, что активное сопротивление контура в основном определяется сопротивлением потерь R x исследуемой катушки.

Рис. 10. Упрощённая схема куметра

Изменением ёмкости конденсатора С о измерительный контур настраивают в резонанс с частотой генератора f по максимальным показаниям вольтметра V2. При этом в контуре будет протекать ток I р ≈ U о /R x , создающий на конденсаторе падение напряжения

U C = I p /(2*π*f*C о) ≈ U о /(2*π*f*C о R x).

Учитывая, что при резонансе 1/(2*π*f*С о) = 2*&pi*f*L x , находим

UC ≈ U o (2*π*f*L x)/R x = U о Q L ,

где Q L = (2*π*f*L x)/R x есть добротность катушки L x при частоте f. Следовательно, показания вольтметра V2 пропорциональны добротности Q L . При фиксированном напряжении U о шкалу вольтметра можно линейно градуировать в значениях Q L ≈ U C /U о. Например, при U о = 0,04 В и пределе измерений вольтметра U п = 10 В напряжениям на входе вольтметра 2, 4, 6, 8 и 10 В будут соответствовать добротности Q L , равные 50, 100, 150, 200 и 250.

Номинальное напряжение U о устанавливают регулировкой режима выходного каскада генератора. Контроль этого напряжения осуществляют по показаниям высокочастотного вольтметра V1, измеряющего напряжение U 1 = U о N на выходе генератора. Например, если шкала добротностей вольтметра V2 выполнена при напряжении Uо = 0,04 В, а коэффициент деления N = 20, то на выходе генератора должно поддерживаться напряжение U x = 0,04*20 = 0,8 В. Предел измерений вольтметра V1 должен несколько превышать расчётное значение напряжения U 1 и равен, например, 1 В.

Повышение верхнего предела измерения добротностей достигается уменьшением напряжения U о до значения, в несколько раз меньшего номинального. Предположим, что при напряжении U о = 0,04 В обеспечивается непосредственный отсчёт добротностей до значения Q L = 250. Если же уменьшить напряжение U о в два раза, до 0,02 В, то стрелка вольтметра V2 будет отклоняться на всю шкалу при добротности Q L = U п /U о = 10/0,02 = 500. Соответственно для повышения верхнего предела измерений в четыре раза, до значения Q L = 1000, измерения следует проводить при напряжении U о = 40/4 = 10 мВ.

Уменьшить напряжение U о до требуемого значения можно двумя способами: изменением коэффициента деления N посредством переключения конденсаторов С 1 различных номиналов либо регулировкой выходного напряжения U 1 генератора. Для удобства измерения больших добротностей вольтметр V1 (или переключатель коэффициентов деления) снабжают шкалой (маркировкой), отсчёт по которой, характеризующий степень уменьшения напряжения U о по сравнению с его номинальным значением, является множителем к шкале добротностей вольтметра V2.

Для проверки работы куметра и расширения его возможностей используют опорные катушки L о с известными индуктивностью и добротностью. Обычно имеется комплект из нескольких сменных катушек L о, которые вместе с конденсатором переменной ёмкости С о обеспечивают резонансную настройку измерительного контура в пределах всего диапазона рабочих частот генератора.

При измерении добротности катушек индуктивности Q L за 10-15 мин до начала работы включают питание прибора и настраивают генератор на требуемую частоту. После прогрева производят установку нуля вольтметров V1 и V2. Испытуемую катушку подключают к зажимам 1 и 2. Постепенным повышением выходного напряжения генератора добиваются отклонения стрелки вольтметра V1 до отметки номинала. Конденсатором Со настраивают контур в резонанс с частотой генератора. Если при этом стрелка вольтметра V2 заходит за шкалу, выходное напряжение генератора уменьшают. Значение добротности Q L определяют как произведение отсчётов по шкале добротностей вольтметра V2 и по шкале множителей вольтметра V1.

Добротность колебательного контура Q K измеряют в том же порядке при подключении катушки контура к зажимам 1 и 2, а его конденсатора - к зажимам 3 и 4. При этом конденсатор С о устанавливают в положение минимальной ёмкости. Если конденсатор исследуемого контура имеет переменную ёмкость, то им производят настройку контура в резонанс на требуемую частоту генератора f; если этот конденсатор постоянный, то резонансную настройку осуществляют изменением частоты генератора.

Измерение куметром индуктивности катушек L x производят способом, рассмотренным выше в связи со схемой на рис. 9. Генератор настраивают на опорную частоту, выбираемую согласно таблице в зависимости от ожидаемого значения L x . Испытуемую катушку подключают к зажимам 1 и 2 Измерительный контур настраивают в резонанс конденсатором С о, по специальной шкале которого оценивают значение L x с учётом цены деления, указанной в таблице. Одновременно способом вариации параметров контура можно определить и собственную ёмкость катушки C L . При двух произвольных значениях ёмкостей С 01 и С 02 конденсатора С о изменением настройки генератора находят резонансные частоты контура f 1 и f 3 . Искомая ёмкость

C L = (C 02 f 4 2 -C 01 f 1 2) : (f 1 2 -f 2 2)

Измерение куметром ёмкостей выполняют методом замещения. Испытуемый конденсатор С х присоединяют к зажимам 3 и 4, а к зажимам 1 и 2 подключают одну из опорных катушек L о, обеспечивающую резонансную настройку контура в выбранном диапазоне частот. Одновременно можно определить и тангенс угла потерь (добротность) конденсатора:

tg δ = 1/(2*π*f*C x R п)

(где R п - сопротивление потерь). Для этого при двух значениях ёмкостей C 01 и С 02 , соответствующих резонансным настройкам контура без конденсатора С х и при подключении последнего, находят добротности контура Q 1 и Q 2 , а затем совершают вычисление по формуле

tg δ = Q 1 Q 2 /(Q 1 -Q 2) * (C 01 -C 02)/C 01

При необходимости генератор куметра можно использовать в качестве измерительного генератора, а электронные вольтметры - для измерения напряжений в широком диапазоне частот.

Приборы непосредственной оценки и сравнения

К измерительным приборам непосредственной оценки значения измеряемой емкости относятся микрофарадметры , действие которых базируется на зависимости тока или напряжения в цепи переменного тока от значения включенной в нее . Значение емкости определяют по шкале стрелочного измерителя.

Более широко для измерения и индуктивностей применяют уравновешенные мосты переменного тока , позволяющие получить малую погрешность измерения (до 1 %). Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400-1000 Гц. В качестве индикаторов применяют выпрямительные или электронные милливольтметры, а также осциллографические индикаторы.

Измерение производят балансированием моста в результате попеременной подстройки двух его плеч. Отсчет показаний берется по лимбам рукояток тех плеч, которыми сбалансирован мост.

В качестве примера рассмотрим измерительные мосты, являющиеся основой измерителя индуктивности ЕЗ-3 (рис. 1) и измерителя емкости Е8-3 (рис. 2).

Рис. 1. Схема моста для измерения индуктивности

Рис. 2. Схема моста для измерения емкости с малыми (а) и большими (б) потерями

При балансе моста (рис. 1) индуктивность катушки и ее добротность определяют по формулам Lx = R1R2C2; Qx = wR1C1.

При балансе мостов (рис. 2) измеряемая емкость и сопротивление потерь определяют по формулам

Измерение емкости и индуктивности методом амперметра-вольметра

Для измерения малых емкостей (не более 0,01 - 0,05 мкФ) и высокочастотных катушек индуктивности в диапазоне их рабочих частот широко используют резонансные методы Резонансная схема обычно включает в себя генератор высокой частоты, индуктивно или через емкость связанный с измерительным LС-контуром. В качестве индикаторов резонанса применяют чувствительные высокочастотные приборы, реагирующие на ток или напряжение.

Методом амперметра-вольтметра измеряют сравнительно большие емкости и индуктивности при питании измерительной схемы от источника низкой частоты 50 - 1000 Гц.

Для измерения можно воспользоваться схемами рис. 3.

Рисунок 3. Схемы измерения больших (а) и малых (б) сопротивлений переменному току

По показаниям приборов полное сопротивление

где

из этих выражений можно определить

Когда можно пренебречь активными потерями в конденсаторе или катушке индуктивности, используют схему рис. 4. В этом случае


Рис. 4. Схемы измерения больших (а) и малых (б) сопротивлений методом амперметра - вольтметра

Измерение взаимной индуктивности двух катушек